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Abstract
We prove a conjecture raised by the work of Diaconis and Shahshahani (1981) about the

mixing time of random walks on the permutation group induced by a given conjugacy class.
To do this we exploit a connection with coalescence and fragmentation processes and control
the Kantorovitch distance by using a variant of a coupling due to Oded Schramm. Recasting
our proof in the language of Ricci curvature, our proof establishes the occurrence of a phase
transition, which takes the following form in the case of random transpositions: at time cn/2,
the curvature is asymptotically zero for c ≤ 1 and is strictly positive for c > 1.
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1 Introduction

1.1 Main results

Let Sn denote the multiplicative group of permutations of {1, . . . , n}. Let Γ ⊂ Sn be a fixed
conjugacy class in Sn, i.e., Γ = {gτg−1 : g ∈ Sn} for some fixed permutation τ ∈ Sn. Alternatively,
Γ is the set of permutation in Sn having the same cycle structure as σ. Let Xσ = (X0, X1, . . .) be
discrete-time random walk on Sn induced by Γ, started in the permutation σ ∈ Sn, and let Y σ be
the associated continuous time random walk. These are the processes defined by

Xσ
t = σ ◦ γ1 ◦ · · · ◦ γt; t = 0, 1, . . .

Y σ
t = Xσ

Nt
; t ∈ [0,∞)

(1)

where γ1, γ2, . . . are i.i.d. random variables which are distributed uniformly in Γ; and (Nt, t ≥ 0)
is an independent Poisson process with rate 1. Then Y is a Markov chain which converges to an
invariant measure µ as t → ∞. If Γ ⊂ An (where An denotes the alternating group) then µ is
uniformly distributed on An and otherwise µ is uniformly distributed on Sn. The simplest and
most well known example of a conjugacy class is the set T of all transpositions, or more generally
of all cyclic permutations of length k ≥ 2. This set will play an important role in the rest of the
paper. Note that Γ depends on n but we do not indicate this dependence in our notation.

The main goal of this paper is to study the cut-off phenomenon for the random walk X. More
precisely, recall that the total variation distance ‖X − Y ‖TV between two random variables X, Y
taking values in a set S is given by

‖X − Y ‖TV = sup
A⊂S
|P(X ∈ A)− P(Y ∈ A)|. (2)

For 0 < δ < 1, the mixing time tmix(δ) is by definition given by

tmix(δ) = inf{t ≥ 0 : dTV (t) ≤ δ}

where
dTV (t) = sup

σ
‖Y σ

t − µ‖TV (3)

and µ is the invariant measure defined above.
In the case where Γ = T is the set of transpositions, a famous result of Diaconis and Shahsha-

hani [9] is that the cut-off phenomenon takes place at time (1/2)n log n asymptotically as n→∞.
That is, tmix(δ) is asymptotic to (1/2)n log n for any fixed value of 0 < δ < 1. It has long been
conjectured that for a general conjugacy class such that |Γ| = o(n) (where here and in the rest of
the paper, |Γ| denotes the number of non fixed points of any permutation γ ∈ Γ), a similar result
should hold at a time (1/|Γ|)n log n. This has been verified for k-cycles with a fixed k ≥ 2 by
Berestycki, Schramm and Zeitouni [6]. This is a problem with a substantial history which will be
detailed below.

The primary purpose of this paper is to verify this conjecture. Hence our main result is as
follows.
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Theorem 1.1. Let Γ ⊂ Sn be a conjugacy class and suppose that |Γ| = o(n). Define

tmix :=
1

|Γ|
n log n. (4)

Then for any ε > 0,

lim
n→∞

dTV ((1− ε) tmix) = 1 and lim
n→∞

dTV ((1 + ε) tmix) = 0. (5)

Our main tool for this result is the notion of discrete Ricci curvature as introduced by Ol-
livier [17], for which we obtain results of independent interest. We briefly discuss this notion here;
however we point out that this turns out to be equivalent to the more well-known path coupling
method and transportation metric introduced by Bubley and Dyer [7] and Jerrum [13] (see for
instance Chapter 14 of the book [15] for an overview). However we will cast our results in the
language of Ricci curvature because we find it more intuitive. Recall first that the definition of the
L1-Kantorovitch distance (sometimes also called Wasserstein or transportation metric) between two
random variables X,Y taking values in a metric space (S, d) is given by

W1(X,Y ) := inf E[d(X̂, Ŷ )] (6)

where the infimum is taken over all couplings (X̂, Ŷ ) which are distributed marginally as X and Y
respectively. Ollivier’s definition of Ricci curvature of a Markov chain (Xt, t ≥ 0) on a metric space
(S, d) is as follows:

Definition 1.1. Let t > 0. The curvature between two points x, x′ ∈ S with x 6= x′ is given by

κt(x, x
′) := 1− W1(Xx

t , X
x′
t )

d(x, x′)
(7)

where Xx
t and Xx′

t denote Markov chains started from x and x′ respectively. The curvature of X is
by definition equal to

κt := inf
x 6=x′

κt(x, x
′).

In the terminology of Ollivier [17], this is in fact the curvature of the discrete-time random walk
whose transition kernel is given by mx(·) = P(Xt = ·|X0 = x). We refer the reader to [17] for an
account of the elegant theory which can be developed using this notion of curvature, and point out
that a number of classical properties of curvature generalise to this discrete setup.

For our results it will turn out to be convenient to view the symmetric group as a metric space
equipped with the metric d which is the word metric induced by the set T of transpositions (we will
do so even when the random walk is not induced by T but by a general conjugacy class Γ). That
is, the distance d(σ, σ′) between σ, σ′ ∈ Sn is the minimal number of transpositions one must apply
to get from one element to the other (one can check that this number is independent of whether
right-multiplications or left-multiplications are used).

For simplicity we focus in this introduction on the case where the random walk is induced by
the set of transpositions T . (A more general result will be stated later on the paper). For c > 0
and σ 6= σ′, let

κc(σ, σ
′) = 1−

W1(Xσ
bcn/2c/, X

σ′

bcn/2c)

d(σ, σ′)
(8)
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and define κc(σ, σ) = 1. That is, κc(σ, σ′) = κbcn/2c(σ, σ
′) with our notation from (7). In particular,

κc depends on n but this dependency does not appear explicitly in the notation. It is not hard
to see that κc(σ, σ′) ≥ 0 (apply the same transpositions to both walks Xσ and Xσ′). For parity
reasons it is obvious that that κc(σ, σ′) = 0 if σ and σ′ do not have the same signature. Thus we
only consider the curvature between elements of even distance. For c > 0 define

κc = inf κc(σ, σ
′),

where the infimum is taken over all σ, σ′ ∈ Sn such that d(σ, σ′) is even. Our main result states
that κc experiences a phase transition at c = 1. More precisely, the curvature κc is asymptotically
zero for c ≤ 1 but for c > 1 the curvature is strictly positive asymptotically. In order to state our
result, we introduce the quantity θ(c), which is the largest solution in [0, 1] to the equation

θ(c) = 1− e−cθ(c). (9)

It is easy to see that θ(c) = 0 for c ≤ 1 and θ(c) > 0 for c > 1. In fact, θ(c) is nothing else but the
survival probability of a Galton-Watson tree with Poisson offspring distribution with mean c.

Theorem 1.2. If c ≤ 1,
lim
n→∞

κc = 0 (10)

On the other hand, for c > 1
lim inf
n→∞

κc ≥ θ(c)4 (11)

and
lim sup
n→∞

κc ≤ θ(c)2 (12)

A more general version of this theorem will be presented later on, which gives results for the
curvature of a random walk induced by a general conjugacy class Γ. This will be stated as Theorem
2.2.

We believe that the upper bound is the sharp one here, and thus make the following conjecture.

Conjecture 1.3. For c > 0,
lim
n→∞

κc = θ(c)2.

Of course the conjecture is already established for c ≤ 1 and so is only interesting for c > 1.

1.2 Relation to previous works and organisation of the paper

Mixing times of Markov chains were initiated independently by Aldous [1] and by Diaconis and
Shahshahani [9]. In particular, as already mentioned, Diaconis and Shahshahani proved Theorem 1.1
in the case where Γ is the set T of transpositions. Their proof relies on some deep connections with
the representation theory of Sn and bounds on so-called character ratios. The conjecture about the
general case appears to have first been made formally in print by Roichman [18] but it has no doubt
been asked privately before then. We shall see that that the lower bound tmix(δ) ≥ (1/|Γ|)n log n is
fairly straightforward; the difficult part is the corresponding upper bound.

Flatto, Odlyzko and Wales [12] built on the earlier work of Vershik and Kerov [23] to obtain
that tmix(δ) ≤ (1/2)n log n when |Γ| is bounded (as is noted in [8, p.44-45]). This was done using
character ratios and this method was extended further by Roichman [18, 19] to show an upper
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bound on tmix(δ) which is sharp up to a constant when |Γ| = o(n) (and in fact, more generally when
|Γ| is allowed to grow to infinity as fast as (1− δ)n for any δ ∈ (0, 1)). Again using character ratios
Lulov and Pak [16] shows the cut-off phenomenon as well as tmix = (1/|Γ|)n log n in the case when
|Γ| ≥ n/2. Roussel [20, 21] shows the correct mixing time as well as the cut-off phenomenon for
the case when |Γ| ≤ 6. Finally, in a more recent article Berestycki, Schramm and Zeitouni [6], it is
shown using coupling arguments that the cut-off phenomenon occurs and tmix = (1/k)n log n in the
case when Γ consists only of cycles of length k for any k ≥ 2 fixed.

The authors in Berestycki, Schramm and Zeitouni [6] remark that their proof can be extended
to cover the case when Γ is a fixed conjugacy class and indicate that their methods can probably
be pushed to cover the case when |Γ| = o(

√
n). Their argument uses very delicate estimates about

the mixing time of small cycles, together with a variant of a coupling due to Schramm [22] to deal
with large cycles. The most technical part of the argument is to analyse the distribution of small
cycles. While our approach in this paper bears some similarities with the paper [6], we shall see
that our use of the L1-Kantorovitch distance (Ricci curvature) allows us to completely bypass the
difficulty of ever working with small cycles. This is quite surprising given that the small cycles (in
particular, the fixed points) are responsible for the occurrence of the cut-off at time tmix.

Acknowledgements. We thank Yuval Peres and Spencer Hughes for useful discussions on discrete
Ricci curvature.

2 Curvature and mixing

2.1 Curvature theorem

The left part of (5) is relatively easy and is probably known. We give a proof in Appendix A. We
now start the proof of the main results of this paper, which is the right hand side of (5). We will
show how our bounds on coarse Ricci curvature imply the desired result for the upper bound on
tmix(δ). We first state the more general version of Theorem 1.2 discussed in the introduction. To
begin, we define the cycle structure (k2, k3, . . . ) of Γ to be a vector such that for each j ≥ 2, there
are kj cycles of length j in the cycle decomposition of any τ ∈ Γ (note that this is the same for any
τ ∈ Γ). Then kj = 0 for all j > n and we have that |Γ| =

∑∞
j=2 jkj .

In the case for the transposition random walk the quantity θ(c) which appears in the bounds is
the survival probability of a Galton-Watson process with offspring distribution given by a Poison
random variable with mean c. Our first task is to generalise θ(c). We do so via a fixed point
equation, which is more complex here (and we point out that the interpretation in terms of survival
probability of a certain Galton-Watson process does not hold in general). Firstly notice that for
each j ≥ 2 we have that jkj/|Γ| ≤ 1. Thus (jkj/|Γ|)j≥2 is compact in the product topology (the
topology of pointwise convergence). Hence by extracting a subsequence we may if we wish assume
without loss of generality that (

2k2

|Γ|
,
3k3

|Γ|
, . . .

)
→ (k′2, k

′
3, . . . ) (13)

pointwise as n→∞. It follows that for each j ≥ 2, k′j ∈ [0, 1] and
∑∞

j=2 k
′
j ≤ 1 by Fatou’s lemma.
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For x ∈ [0, 1] and c > 0 define

Ψ(x, c) = exp

−c
1−

∞∑
j=2

k′j(1− x)j−1

 . (14)

Note that for each c > 0, x 7→ Ψ(x, c) is convex on [0, 1]. In the case when
∑

j≥2 k
′
j < 1, the

function Ψ(·, c) is not a generating function of a random variable for any c > 0. On the other hand
if
∑

j≥2 k
′
j = 1 then for any c > 0 it is possible to write Ψ(·, c) as the generating function of a

random variable.

Lemma 2.1. Define

cΓ :=



 ∞∑
j=2

(j − 1)k′j

−1

if
∞∑
j=2

k′j = 1

0 if
∞∑
j=2

k′j < 1.

(15)

Then for c > cΓ there exists a unique θ(c) ∈ (0, 1) such that

θ(c) = 1−Ψ(θ(c), c).

For c > cΓ, c 7→ θ(c) is increasing, continuous and differentiable. Further limc↓cΓ θ(c) = 0 and
limc↑∞ θ(c) = 1.

Proof. For x ∈ [0, 1] and c > 0 define fc(x) := 1 − Ψ(x, c) − x. There are two cases to consider.
First suppose that z =

∑∞
j=2 k

′
j < 1. Then we have that

fc(0) = 1− e−c(1−z) > 0 and fc(1) = −e−c < 0.

As x 7→ fc(x) is concave on [0, 1] it follows that there exists a unique θ(c) ∈ (0, 1) such that
fc(θ(c)) = 0.

Next suppose that
∑∞

j=2 k
′
j = 1, then

fc(0) = 0 and fc(1) = −e−c < 0

Moreover we have that
d

dx
fc(x)|x=0 = c

∞∑
j=2

(j − 1)k′j − 1.

Hence for c > cΓ we have that d
dxfc(x)|x=0 > 0 and again by concavity it follows that there exists

a unique θ(c) ∈ (0, 1) such that fc(θ(c)) = 0.
For the rest of the statements suppose that c > cΓ. The fact that c 7→ θ(c) is increasing follows

from the definition of Ψ(x, c) and the fact that θ(c) = Ψ(θ(c), c).
Next we show continuity and differentiability. Define for x ∈ [0, 1] define gc,1(x) = 1 − Ψ(x, c)

and for n ≥ 2 define recursively gc,n(x) = 1−Ψ((fc,n−1(x), c). Then a simple argument (see [2, I.3
Lemma 2] for instance) shows that for any x ∈ (0, 1) we have that gc,n(x)→ θ(c) as n→∞.
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Let δ > 0, then it follows that for any x ∈ (0, 1):

θ(c+ δ)− θ(c) = lim
n→∞

[gn,c+δ(x)− gn,c(x)].

On the other hand we have that uniformly in x ∈ [0, 1],

Ψ(x, c)−Ψ(x, c+ δ) ≤ 1− e−δ

and hence it follows that
θ(c+ δ)− θ(c) ≤ 1− e−δ

and from this it follows that c 7→ θ(c) is continuous and differentiable on (cΓ,∞).
Notice that θ(c) ∈ [0, 1], hence θ(c) has convergent subsequences as c ↓ cΓ. Let L denote a

subsequential limit of θ(c) as c ↓ cΓ. Then it follows that L solves the equation L = 1 − Ψ(L, cΓ).
This equation has only a zero solution and thus L = 0 and hence limc↓cΓ θ(c) = 0. The limit as
c ↑ ∞ follows from a similar argument.

In the case when Γ = T is the set of transpositions we have that k′2 = 1 and k′j = 0 for j ≥ 3,
hence Ψ(x, c) = e−cx and thus the definition of θ(c) above agrees with the definition given in the
introduction.

Having introduced θ(c) we now introduce the notion of Ricci curvature we will use in the general
case. For c > 0 and σ 6= σ′, let

κc(σ, σ
′) = 1−

W1(Xσ
bcn/kc/, X

σ′

bcn/kc)

d(σ, σ′)
(16)

where k = |Γ| and define κc(σ, σ) = 1. Then let

κc = inf κc(σ, σ
′),

where the infimum is taken over all σ, σ′ ∈ Sn such that d(σ, σ′) is even. That is, κc(σ, σ′) =
κbcn/kc(σ, σ

′) with our notation from (7). We now state a more general form of Theorem 1.2 which
in particular covers the case of Theorem 1.2.

Theorem 2.2. Let Γ ⊂ Sn be a conjugacy class and recall the definition of cΓ from (15). Then for
c ≤ cΓ,

lim
n→∞

κc = 0. (17)

On the other hand, for c > cΓ

lim inf
n→∞

κc ≥ θ(c)4 > 0 (18)

and
lim sup
n→∞

κc ≤ θ(c)2 (19)

where θ(c) is the unique solution in (0, 1) of

θ(c) = 1−Ψ(θ(c), c). (20)

where Ψ is given by (14).
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2.2 Curvature implies mixing

We now show how Theorem 2.2 implies Theorem 1.1. Again fix ε > 0 and define t = (1 +
2ε)(1/k)n log n and let t′ = b(1+ε)(1/k)n log nc where k = |Γ|. We are left to prove that dTV (t)→ 0
as n→∞. For s ≥ 0 let

d̄TV (s) := sup
σ,σ′
‖Xσ

s −Xσ′
s ‖TV ,

where the sup is taken over all permutations at even distances. We first claim that it suffices to
prove that

d̄TV (t′)→ 0 as n→∞. (21)

Indeed, assume that d̄TV (t′) → 0 as n → ∞. Then there are two cases to consider. Assume that
Γ ⊂ An. Then Xs ∈ An for all s ≥ 1 and µ is uniform on An. Then by Lemma 4.11 in [15],

sup
σ∈An

‖Xσ
t′ − µ‖TV ≤ 2d̄TV (t′).

Hence Theorem 1.1 follows from (21) in this case. In the second case, Γ ⊂ Acn. In this case Xs ∈ An
for s even, and Xs ∈ Acn for s odd. Using the same lemma, we deduce that if s ≥ t′ is even,

‖X id
s − µ1‖TV ≤ 2d̄TV (s)

where µ1 is uniform on An. However, if s ≥ t′ is odd,

‖X id
s − µ2‖TV ≤ 2d̄TV (s)

where this time µ2 is uniform on Acn. Let N = (Ns : s ≥ 0) be the Poisson clock of the random
walk Y . Then P(Ns even) → 1/2 as s → ∞, µ = (1/2)(µ1 + µ2), and P(Nt ≥ t′) → 1 as n → ∞.
Thus we deduce that

‖Y id
t − µ‖TV → 0.

Again, Theorem 1.1 follows. Hence it suffices to prove (21).
Note that for any two random variables X,Y on a metric space (S, d) we have the obvious

inequality ‖X − Y ‖TV ≤ W1(X,Y ) provided that x 6= y implies d(x, y) ≥ 1 on S. This is in
particular the case when S = Sn and d is the word metric induced by the set T of transpositions.
In other words it suffices to prove mixing in the L1-Kantorovitch distance.

By Corollary 21 in [17] we have that for each s ≥ 1,

sup
d(σ,σ′) even

W1(Xσ
sbcn/kc, X

σ′

sbcn/kc) ≤ (1− κc)s sup
d(σ,σ′) even

d(σ, σ′) ≤ n(1− κc)s (22)

since the diameter of Sn is equal to n− 1. Solving

n(1− κc)s ≤ δ

we get that

s ≥ log n− log δ

− log(1− κc)
(23)

Thus if u = scn/k ≥ sbcn/kc, it suffices that

u ≥ 1

k

c

− log(1− κc)
n(log n− log δ). (24)

Now, Theorem 1.2 gives
lim inf
n→∞

− log(1− κc) ≥ − log(1− θ(c)4).
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Lemma 2.3. We have that
lim
c→∞

c

log(1− θ(c)4)
= −1.

Proof. Using L’Hopital’s rule twice we have that

lim
θ↑1

log(1− θ)
log(1− θ4)

= lim
θ↑1

1− θ4

(1− θ)4θ3
= 1.

Next we have that limc→∞ θ(c) = 1 and hence

lim
c→∞

c

log(1− θ(c)4)
= lim

c→∞

c

log(1− θ(c))
= lim

c→∞

c

Ψ(θ(c), c)

= lim
c→∞

− 1

1−
∑∞

j=2 k
′
j(1− θ(c))j−1

= −1.

Consequently we have that for u ≥ t′ = b(1+ ε)(1/k)n log nc u satisfies (24) for some sufficiently
large c > cΓ. Hence lim supn→∞ d̄TV (t′)→ 0 and thus (21) holds, which finishes the proof.

2.3 Stochastic commutativity

To conclude this section on curvature, we state a simple but useful lemma. Roughly, this says that
the random walk is “stochastically commutative”. This can be used to show that the L1-Kantorovitch
distance is decreasing under the application of the heat kernel. In other words, initial discrepancies
for the Kantorovitch metric between two permutations are only smoothed out by the application of
random walk.

Lemma 2.4. Let σ be a random permutation with distribution invariant by conjugacy. Let σ0 be a
fixed permutation. Then σ0 ◦ σ has the same distribution as σ ◦ σ0.

Proof. Define σ′ = σ0 ◦σ ◦σ−1
0 . Then since σ is invariant under conjugacy, the law of σ′ is the same

as the law of σ. Furthermore, we have σ0σ = σ′σ0 so the result is proved.

This lemma will be used repeatedly in our proof, as it allows us to concentrate on events of high
probability for our coupling.

3 Preliminaries on random hypergraphs

For the proof of Theorem 1.1 we rely on properties of certain random hypergraph processes. The
reader who is only interested in a first instance in the case of random transpositions, and is familiar
with Erdős–Renyi random graphs and with the result of Schramm [22] may safely skip this section.
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3.1 Hypergraphs

In this section we present some preliminaries which will be used in the proof of Theorem 2.2.
Throughout we let Γ ⊂ Sn be a conjugacy class and let (k2, k3, . . . ) denote the cycle structure
of Γ. Thus Γ consists of permutations such that in their cycle decomposition they have k2 many
transpositions, k3 many 3-cycles and so on. Note that we have suppressed the dependence of Γ and
(k2, k3, . . . ) on n. We assume that (13) is satisfied so that for each j ≥ 2, jkj/|Γ| → k′j as n→∞.
We also let k = |Γ| so that k =

∑
j≥2 jkj .

We will need some results which are generalise those of Schramm [22]. The framework which we
will use is that of random hypergraphs.

Definition 3.1. A hypergraph H = (V,E) is given by a set V of vertices and E ⊂ P(V ) of edges,
where P(V ) denotes the set of all subsets of V . An element e ∈ E is called a hyperedge and we call
it a j-hyperedge if |e| = j.

Consider the random walk X = (Xt : t = 0, 1 . . .) on Sn where Xt = X id
t with our notations

from the introduction. Hence
Xt = γ1 ◦ . . . ◦ γt

where the sequence (γi)i≥1 is i.i.d. uniform on Γ. A given step of the random walk, say γs, can
be broken down into cycles, say γs,1 ◦ . . . γs,r where r =

∑
j kj . We will say that a given cyclic

permutation γ has been applied to X before time t if γ = γs,i for some s ≤ t and 1 ≤ i ≤ r.
To X we associate a certain hypergraph process H = (Ht : t = 0, 1, . . .) defined as follows. For

t = 0, 1, . . ., Ht is a hypergraph on {1, . . . , n} where a hyperedge {x1, . . . , xj} is present if and only
if the cyclic permutation (x1, . . . , xj) has been applied to the random walk X prior to time t. For
instance, H1 has exactly kj many j-hyperedges for j ≥ 2. Note that the presence of hyperedges are
not independent.

3.2 Giant component of the hypergraph

In the case Γ = T , the set of transpositions, the hypergraph Hs is a realisation of an Erdős-Renyi
graph. Analogous to Erdős-Renyi graphs, we first present a result about the size of the components
of the hypergraph process H = (Ht : t = 0, 1, . . . ) (where by size, we mean the number of vertices in
this component). For the next lemma recall the definition of Ψ(x, c) in (14). Recall that for c > cΓ,
where cΓ is given by (15), there exists a unique root θ(c) ∈ (0, 1) of the equation θ(c) = 1−Ψ(θ(c), c).

Theorem 3.1. Consider the random hyper graph Hs and suppose that s = s(n) is such that sk/n→
c as n→∞ for some c > cΓ. Then there is a constant β > 0, depending only on c, such that with
probability tending to one all components but the largest have size β log(n). Further the size of the
largest component, normalised by n, converges to θ(c) in probability as n→∞.

Of course, this is the standard Erdős–Renyi theorem in the case where Γ = T is the set of
transpositions. See for instance [11], in particular Theorem 2.3.2 for a proof. In the case of k-cycles
with k fixed and finite, this is the case of random regular hyper graphs analysed by Karoński and
Łuczak [14]. For the slightly more general case of bounded conjugacy classes, this was proved by
Berestycki [4].

Remark 3.2. Note that the behaviour of Hs in Theorem 3.1 can deviate markedly from that of
Erdős–Renyi graphs. The most obvious difference is that Hs can contain mesoscopic components,
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something which has of course negligible probability for Erdős-Renyi graphs. For example, suppose
Γ consists of n1/2 transpositions and one cycle of length n1/3. Then the giant component appears
at time n1/2/2 with a phase transition. Yet even at the first step there is a component of size n1/3.
(However it will follow from the proof that, in the supercritical phase c > cΓ, such a dichotomy
still holds). From a technical point of view this has nontrivial consequences, as proofs of the exis-
tence of a giant component are usually based on the dichotomy between microscopic components and
giant components. Furthermore, when the conjugacy class is large and consists of many small or
mesoscopic cycles, the hyperedges have a strong dependence, which makes the proof very delicate.

Proof of Theorem 3.1. Suppose that s = s(n) is such that sk/n → c for some c > cΓ as n → ∞
for some c ≥ 0. We reveal the vertices of the component containing a fixed vertex v ∈ {1, . . . , n}
using breadth-first search exploration, as follows. There are three states that each vertex can be:
unexplored, removed or active. Initially v is active and all the other vertices are unexplored. At
each step of the iteration we select an active vertex w according to some prescribed rule among the
active vertices at this stage (say with the smallest label). The vertex w becomes removed and every
unexplored vertex which is joined to w by a hyperedge becomes active. We repeat this exploration
procedure until there are no more active vertices.

At stage i = 0, 1, . . . of this exploration process, we let Ai, Ri and Ui denote the set of active,
removed and unexplored vertices respectively. Thus initially A0 = {v}, U0 = {1, . . . , n}\{v} and
R0 = ∅.

We will need to keep track of the hyperedges we reveal and where they came from, in order to
deal with dependencies mentioned in Remark 3.2. For t = 1, . . . , s we call the hyperedges which
are in Ht but not in Ht−1 the t-th packet. Note that each packet consists of kj hyperedges of size
j, j ≥ 2, which are sampled uniformly at random without replacement from {1, . . . , n}. However,
crucially, hyperedges from different packets are independent. For t = 1, . . . , s and j ≥ 2 let Y (t)

j (i)
be the number of j-hyperedges in the t-th packet that were revealed in the exploration process,
prior to step i. Let i ≥ 0 and let Hi denote the filtration generated by the exploration process up
to stage i, including the information of which edge came from which packet:

Hi = σ(A1, . . . , Ai, Y
(t)
j (1), . . . , Y

(t)
j (i) : 1 ≤ t ≤ s, j ≥ 2).

Our goal will be to give uniform stochastic bounds on the distribution of |Ai+1 \Ai|, so long as i is
not too large. We will thus fix i and in order to ease notations we will often suppress the dependence
on i, in Y (t)

j (i): we will thus simply write Y (t)
j . Note that by definition, for each t = 1, . . . , s and

j ≥ 2, Y (t)
j ≤ kj and

s∑
t=1

∑
j≥2

Y
(t)
j = n− |Ui| = |Ai|+ i. (25)

Let w be the vertex being explored for stage i+ 1. For t = 1, . . . , s let Mt be the indicator that w
is part of a hyperedge in the t-th packet. Thus, (Mt)1≤t≤s are independent conditionally given Hi,
and

P(Mt = 1|Hi) =
∑
j≥2

j(kj − Y (t)
j )

|Ui|
(26)

If w is part of a hyperedge in the t-th packet, let Vt be the size of the (unique) hyperedge of that
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packet containing it. Then

P(Vt = j|Hi,Mt = 1) =
j(kj − Y (t)

j )∑
m≥2

m(km − Y (t)
m )

(27)

Note that when Mt = 1 it implies that the denominator above is non-zero and thus (27) is well
defined. When Mt = 0 we simply put Vt = 1 by convention. Then we have the following almost
sure inequality:

|Ai+1 \Ai| ≤ −1 +
s∑
t=1

Mt(Vt − 1). (28)

This would be an equality if it were not for possible self-intersections, as hyperedges connected to
w coming from different packets may share several vertices in common. In order to get a bound
in the other direction, we simply truncate the |Ai+1 \ Ai| at n1/4. Let Ii be the indicator that
among the first n1/4 vertices, no such self-intersection occurs. Note that E(Ii) ≥ pn = 1−n−1/2, by
straightforward bounds on the birthday problem. We then have

|Ai+1 \Ai| ∧ n1/4 ≥ −1 + Ii

(
s∑
t=1

Mt(Vt − 1) ∧ n1/4

)
. (29)

We will stop the exploration process once we have discovered enough vertices, or if the active
set dies out, whichever comes first. Therefore we define

T ↑ := inf{` ≥ 1 : |A`|+ ` > 2n2/3}
T ↓ := inf{` ≥ 1 : |A`| = 0}

and we set T = T ↑∧T ↓. The following lemma shows that the distribution of |Ai+1\Ai| converges to
a limit in distribution, uniformly for i < T . (Note however that the limit is improper if

∑
j k
′
j < 1.)

Lemma 3.3. There exists some deterministic function w : N → R such that w(n) → 0 as n → ∞
with the following property. For each x ∈ (0, 1),

sup
i≥1

∣∣∣∣E[x|Ai+1\Ai||Hi]−
Ψ(1− x, c)

x

∣∣∣∣ 1{T>i} ≤ w(n)

almost surely.

Proof. Suppose T > i. In particular, from the definition of T ↑ and (25) we have that
s∑
t=1

∑
j≥2

jY
(t)
j ≤ 2n2/3 (30)

almost surely. From (28) we have that

xE[x|Ai+1\Ai||Hi] ≥ E[x
∑s
t=1 Mt(Vt−1)|Hi] =

s∏
t=1

E(xMt(Vt−1)|Hi)

=

s∏
t=1

[
1− P(Mt = 1|Hi)(1− E(xVt−1|Hi,Mt = 1))

]
.
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Recall from (27) that

E(xVt−1|Hi,Mt = 1) =
∑
j≥2

xj−1
j(kj − Y (t)

j )∑
m≥2

m(km − Y (t)
m )
≥
∑
j≥2

xj−1
j(kj − Y (t)

j )

k

and from (26) that

P(Mt = 1|Hi) =
∑
m≥2

m(km − Y (t)
m )

|Ui|
≤
∑
m≥2

mkm

n− 2n2/3
≤ k

n
(1 + 3n−1/3)

by (30). Therefore, using 1− x ≥ e−x−x2 for all x sufficiently small,

xE[x|Ai+1\Ai||Hi] ≥
s∏
t=1

1− k

n
(1 + 3n−1/3)

1−
∑
j≥2

xj−1
j(kj − Y (t)

j )

k


≥

s∏
t=1

1− k

n

1 + 3n−1/3 −
∑
j≥2

xj−1 jkj
k

− k

n

∑
j≥2

xj−1
jY

(t)
j

k


≥

s∏
t=1

1− k

n

1−
∑
j≥2

xj−1 jkj
k

− 3n−1/3 k

n
− 1

n

∑
j≥2

jY
(t)
j


≥ exp

−skn
1−

∑
j≥2

xj−1 jkj
k

−O(n−1/3)−O(s
k2

n2
)

 .

Hence
xE[x|Ai+1\Ai||Hi] ≥ ψ(1− x, c)(1 + w1(n))

where w1(n) vanishes at infinity. For the last inequality we have used that

exp(−c
∑
j

xj−1 jkj
k

)→ exp(−c
∑
j

xj−1k′j) (31)

which follows from the dominated convergence theorem, as jkj/k is uniformly bounded by 1. Note
that the above estimate is uniform in i ≥ 1.

For the upper bound, we use (29). Let εn → 0 sufficiently slowly that εnn1/3 → ∞. For
concreteness take εn = n−1/6. Define

G :=

t ∈ {1, . . . , s} :
∑
m≥2

mY (t)
m ≤ εnk

 ,

and let I = Gc. Packets t ∈ I are the bad packets for which a significant fraction of the mass (at
least εn) was already discovered. In the case where the conjugacy class contains only one type of
cycles, say k-cycles, then I coincides with the set of hyperedges already revealed. At the other end
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of the spectrum, when the conjugacy class Γ is broken down into many small cycles, then I is likely
to be empty. But in all cases, |I| satisfies the trivial bound

|I| ≤ n2/3

εnk

by (30), and in particular
k|I|
n
≤ 1

εnn1/3
≤ n−1/6 → 0. (32)

This turns out to be enough for our purposes.
Note that E(x

∑s
t=1 Mt(Vt−1)) and E(xn

1/4∧
∑s
t=1Mt(Vt−1)) can only differ by at most xn1/4 , which

is exponentially small, so we can neglect this difference. Then we may write, counting only hyper
edges from good packets, using the fact that 1− x ≤ e−x for all x ∈ R, and (32):

xE[x|Ai+1\Ai||Hi] ≤ 1− E(Ii) + E(Ii)

xn1/4
+

s∏
t=1

1−
k −

∑
m≥2mY

(t)
m

n

1−
∑
j≥2

xj−1
j(kj − Y (t)

j )

k −
∑
m≥2

mY (t)
m





≤ 2n−1/2 +
∏
t∈G

1− k

n
(1− εn)

1−
∑
j≥2

xj−1 jkj
k(1− εn)


≤ 2n−1/2 + exp

−skn + (1− εn)
k

n
|I|+ εn

sk

n
+ s

k

n

∑
j≥2

xj−1 jkj
k


= 2n−1/2 + exp

−skn +
sk

n

∑
j≥2

xj−1 jkj
k

 (1 + 2cεn + 2n−1/6) (33)

≤ Ψ(1− x, c)(1 + w2(n))

where the function w2 : N→ R vanish at infinity, invoking again (31). The proof is complete.

We will need the following lemma which tells us the number of vertices in logarithmically large
components, among other things.

Lemma 3.4. For any β > 0, We have that

lim
n→∞

P(T ↓ > β log n) = θ(c). (34)

Moreover, letting for v ∈ {1, . . . , n} let Cv denote the size of the component containing v

1

n
|{v : |Cv| ≥ β log n}| → θ(c) (35)

in probability as n→∞.

Proof. We start with the lower bound of (34). For simplicity write θ = θ(c). Let x = xn be the
solution of the equation

exp

−skn +
sk

n

∑
j≥2

xj−1 jkj
k

 = x.
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It is easy to check that xn ∈ (0, 1) is well-defined and xn → 1− θ as n→∞. From (33) we see that

E(x
|Ai+1\Ai|
n |Hi) ≤ 1 +O(n−1/6),

uniformly in i ≤ T , where the implied constant is nonrandom. Consequently,

Mi = x|Ai|n (1−O(n−1/6))i, i = 1, . . . , T,

forms a supermartingale. Let Tr = inf{i ≥ 0 : |Ai| ≥ r}. Note that if Tr < T ↓ then T ↓ > r. Thus if
T ↓ < r, then T ↓ < Tr. We apply the optional stopping theorem at time r ∧ Tr ∧ T ↓, and we bound
from below M by considering only its value on the event {T ↓ < r}, in which case also Tr > T ↓, and
hence r ∧ Tr ∧ T ↓ = T ↓. Therefore,

Mr∧Tr∧T ↓ ≥MT ↓1{T ↓<r}

≥ (1−O(n−1/6))r1{T ↓<r}.

Hence
P(T ↓ < r) ≤ (1 +O(n−1/6))rE(Mr∧Tr∧T ↓) ≤ E(M0) = xn.

Taking r = β log n, and recalling that xn → 1− θ, we deduce that

lim sup
n→∞

P(T ↓ < β log n) ≤ 1− θ

from which the lower bound of (34) follows. For the upper bound of (34), we make the following
observation. Let m ≥ 1, be finite arbitrary (eventually chosen to be large), and observe P(T ↓ >
β log n) ≤ P(T ↓ > m). Now, let Xi+1 = |Ai+1 \ Ai|. It follows from Lemma 3.3 that (X1, . . . , Xm)
converge to i.i.d. random variables (Y1, . . . , Ym) (which are possibly improper, if

∑
k′j < 1) having

as generating function E(xY ) = ψ(1− x, c)/x. Formally,

Y =

∑
j

(j − 1) Poisson (ck′j)

+

∞ · Poisson (c(1−
∑
j

k′j))


where the Poisson random variables are independent. Let Si =

∑
j≤i Yi andH = inf{i ≥ 0 : Si = 0}.

Then clearly for all m,
lim
m→∞

P(T ↓ ≥ m) = P(H ≥ m)

and thus
lim sup
n→∞

P(T ↓ > β log n) ≤ lim sup
m→∞

P(H > m).

On the other hand the right hand side is easily shown, by standard random walk theory, to equal θ.
Thus the upper bound of (34) follows. We now turn to (35). Observe that |Cv| ≥ β log n precisely
if T ↓ ≥ β log n, hence if Z =

∑n
v=1 1{|Cv |≥β logn}, we have that E(Z)/n → θ by (34). Hence if we

show that Var(Z) = o(n2) then (35) follows by Chebyshev’s inequality. In particular, it suffices to
show that for v 6= w ∈ {1, . . . , n},

lim sup
n→∞

Cov(1{|Cv |≥β logn}, 1{|Cw|≥β logn}) ≤ 0
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or equivalently,
lim sup
n→∞

P(|Cv| ≥ β log n, |Cw| ≥ β log n) ≤ θ(c)2 (36)

given that we already from (34) that P(|Cv| ≥ β log n) → θ(c). On the other hand, (36) can be
proved in exactly the same way as the upper bound of (34) above. Details are left to the reader.

We claim that we can choose x ∈ (0, 1) such that Ψ(1 − x, c)/x < 1. There are two cases to
consider. If

∑
j≥2 k

′
j < 1

ψ(1− x, c) =: z(x) = exp

−c+ c
∑
j≥2

xj−1k′j

 ≤ z(1) = exp

−c+ c
∑
j≥2

k′j

 < 1

so the result is trivial. Otherwise, z(1) = 1 and it is not hard to argue that

d

dx
z(x)|x=1 = c

∑
j≥2

(j − 1)k′j > 1

by definition of cΓ and since c > cΓ. By Taylor’s theorem it follows that z(x)/x < 1 for some
0 < x < 1 sufficiently close to 1.

Hence, using Lemma 3.3, for x fixed as above, we can suppose that n is large enough so that

E[x|Ai+1\Ai||Hi] ≤ (1 + ε)−1 (37)

almost surely on {T > i} for some fixed ε > 0.
Step 1. We now fix x as in (37) and let r = β log n for some constant β > 0 to be chosen later.

Our first task is to show that if |Ar| > 0, then it follows that T ↑ < T ↓ with high probability. If
T ↑ < r there is nothing to do so we may assume that T ≥ r. To do this, let C > 3 log(1/x), we first
show that if T ≥ r and |Ar| > 0, then |Ar| > C log n with high probability.

P(T > r, 0 < |Ar| ≤ C log n) ≤ P(x|Ar| ≥ xC logn;T ≥ r)

≤
E[x|Ar|1{T≥r}]

xC logn

= x−C logn+1E

[
r−1∏
i=0

E[x|Ai+1\Ai|1{T>i}|Hi]

]
≤ x−C logn+1(1 + ε)−β logn.

Thus we can choose β > 0 suitably large so that

P(T > r, 0 < |Ar| ≤ C log n) ≤ n−3.

Step 2. We now show that, under the assumption T > r, T ↓ is unlikely to occur before T ↑.
For i ≥ r, let Mi := x|Ai∧T |(1 + ε)i∧T−r. Then it is not hard to check that M = (Mi : i = r, . . . , T )
is a supermartingale in the filtration (Hr,Hr+1, . . .). Observe that necessarily T ≤ 2n2/3 so M is
bounded. Suppose that T > r. Note that on the event {T = T ↓},

MT = (1 + ε)T
↓−r ≥ 1{T=T ↓}
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hence by the optional stopping theorem (since M is bounded), on the event {T > r}

P(T = T ↓|Hr) ≤ E(MT 1{T=T ↓}|Hr)

≤Mr = x|Ar|.

We deduce that

P
(
T = T ↓ ;T > r

)
≤ E(xC logn; |Ar| > 0) + P(T > r; 0 < |Ar| < C log n)

and hence
P
(
T = T ↓;T > r

)
≤ xC logn + n−3 ≤ 2n−3. (38)

Step 3. Note that if T ↑ > T ↓ we have necessarily that |An2/3 | > 0 (indeed, recall that |Ai|+ i
is monotone as the total number of vertices discovered by stage i). In our third step we show that
if |An2/3 | > 0, then with high probability |An2/3 | ≥ Kn2/3 for some constant K > 0. There are two
cases to consider: either T ↑ ≤ n2/3 or T ↑ > n2/3. In the first case we have that

|An2/3 |+ n2/3 ≥ |A↑T |+ T ↑ ≥ 2n2/3

since |Ai|+ i is the number of vertices discovered by stage i and is thus monotone, and the second
inequality is the definition of T ↑. Therefore,

|An2/3 | ≥ n2/3

and so the claim is satisfied with K = 1. Thus consider the second case T ↑ < n2/3. Since we are
also assuming that |An2/3 | > 0, we may thus assume that T > n2/3. Now

P(|An2/3 | ≤ Kn2/3;T > n2/3) ≤
E[x|An2/3 |1{T>n2/3}]

xKn
2/3

= x−Kn
2/3

E

n2/3−1∏
i=0

E[x|Ai+1\Ai|1{T>i}|Hi]


≤ (1 + ε)−n

2/3
x−Kn

2/3
.

LetK > 0 be chosen small enough that x−K < 1+ε, so that the above quantity decays exponentially
in n2/3, and in particular is smaller than n−3 for n sufficiently large. In either case we see that

P
(
|An2/3 | ≤ Kn2/3; |An2/3 | > 0

)
≤ n−3.

Step 4. Combining this with (38) we get

P
(
|An2/3 | ≤ Kn2/3;T > r

)
≤ P(|An2/3 | = 0;T > r) + P(|An2/3 | ≤ Kn2/3;T > n2/3)

≤ P(T = T ↓;T > r) + n−3

≤ 3n−3.

In particular,
P(|AT∧n2/3 | ≤ Kn2/3;T ↓ > r) ≤ 3n−3. (39)
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Suppose v is a vertex and that |Cv| > β log n = r. Then observe that T ↓ > r. Accordingly, it
is likely that |AT∧n2/3 | ≥ Kn2/3 by (39). If v′ is another vertex and we assume that |Cv′ | > r, we
may likewise explore its component. We seek to show that v and v′ are likely to be connected. As
we explore Cv′ we may find a connection from Cv′ to Cv before time T ∧ n2/3 (in the exploration of
Cv′) in which case we are done. Else, we can repeat the argument above and show that it is likely
that the active vertex set of Cv′ also reaches Kn2/3, at a time T ′∧n2/3, with obvious notations. Let
A = AT∧n2/3 (resp. A′ = A′

T ′∧n2/3) denote the active vertex set of Cv (resp. Cv′) at time T ∧ n2/3

(resp. T ′ ∧ n2/3). Hence we may assume that A∩A′ = ∅ and |A|, |A′| ≥ Kn2/3. We now show that
A and A′ are likely to be connected by making use of the sprinkling technique. That is, suppose we
add s′ packets, with

s′ =

⌈
Dn2/3 log n

k

⌉
for some D > 0 to be chosen later on. Note that s′k/n→ 0 so that (s+ s′)k/n→ c. Since s = s(n)
is an arbitrary sequence such that sk/n → c it suffices to show that v and v′ are then connected
at time s + s′. In fact we will check that A and A′ are connected using smaller edges that the
hyperedges making each packet, as follows. For each hyperedge of size j we will only reveal a subset
of bj/2c edges with disjoint support. This gives us a total of at least k/2 edges for each packet
which are sampled uniformly at random without replacement from {1, . . . , n}. We will check that
a connection occurs between A and A′ within these s′k/2 edges.

Let us say that A (resp. A′) is left half-vacant by a given (sub)packet if the intersection of the
edges of the pack with A (resp. A′) don’t contain more than Kn2/3/2 vertices, and call A or A′

half-full otherwise. It is obvious that if A is half-full then the probability for an edge to join A
to A′ tends to one exponentially fast in n2/3, so we restrict to the case where a given (sub)packet
leaves both A and A′ half-vacant. In this case, each edge from subpacket connects A to A′ with
probability at least

(Kn2/3/2)2

(n− k)2
≥ K2

8n2/3
,

independently for each edge within a given (sub)packet, and hence in particular independently for
all the s′k/2 edges we are adding in total. Consequently, the probability that no connection occurs
during these s′k/2 trials is at most(

1− K2

8n2/3

)s′k/2
≤ exp

(
− K2

8n2/3

Dn2/3 log n

4

)
= exp

(
−DK

2

32
log n

)
.

For D > 0 sufficiently large this is less than n−3.
Step 5. We are now ready to conclude that vertices are either in small component at time s

or connected at time s+ s′. For v ∈ {1, . . . , n} let Cv(s) denote the the component containing v at
time s and for v, v′ ∈ {1, . . . , n}. Write v ↔ v′ to indicate that v is connected to v′ and define the
good event

G(v, v′) := {v ↔ v′ at time s+ s′} ∪ {|Cv(s)| ≤ β log n} ∪ {|Cv′(s)| ≤ β log n}.

Altogether we have just shown that P(G(v, v′)c) ≤ 4n−3, since if . Hence we see that by a union
bound

P

 ⋂
v,v′∈{1,...,n}

G(v, v′)

 ≥ 1− 4n−1.
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Let V ′ = {v : |Cv(s)| ≥ β log n}. Then by (35), we know that |V ′|/n → θ(c) in probability as
n→∞. Moreover, we see that all the vertices of V ′ are connected with probability 1− o(1) at time
s+ s′. Theorem 3.1 follows.

3.3 Poisson–Dirichlet structure

The renormalised cycle lengths X(σ) of a permutation σ ∈ Sn is the cycle lengths of σ divided by
n, written in decreasing order. In particular we have that X(σ) takes values in

Ω∞ := {(x1 ≥ x2 ≥ . . . ) : xi ∈ [0, 1] for each i ≥ 1 and
∞∑
i=1

xi = 1}. (40)

We equip Ω∞ with the topology of pointwise convergence. If σn is uniformly distributed in Sn then
X(σn) → Z in distribution as n → ∞ where Z is known as a Poisson–Dirichlet random variable.
It can be constructed as follows. Let U1, U2, . . . be i.i.d. uniform random variables on [0, 1]. Let
Z∗1 = U1 and inductively for i ≥ 2 set Z∗i = Ui(1−

∑i
j=1 Z

∗
j ). Then (Z∗1 , Z

∗
2 , . . . ) can be ordered in

decreasing size and the random variable Z has the same law as (Z∗1 , Z
∗
2 , . . . ) ordered by decreasing

size.
The next result is a generalisation of Theorem 1.1 in [22] to the case of general conjugacy classes.

The proof is a simple adaptation of the proof of Schramm and we provide the details in an appendix.

Theorem 3.5. Suppose s = s(n) is such that sk/n→ c as n→∞ for some c > cΓ. Then we have
that for any m ∈ N (

X1(Xs)

θ(c)
, . . . ,

Xm(Xs)

θ(c)

)
→ (Z1, . . . , Zm)

in distribution as n→∞ where Z = (Z1, Z2, . . . ) is a Poisson–Dirichlet random variable.

4 Proof of curvature theorem

4.1 Proof of the upper bound on curvature

We claim that it is enough to show the upper bound for c > cΓ in (19). Indeed, notice that c 7→ κc
is increasing. Let c ≤ cΓ and assume that lim supn→∞ κc′ ≤ θ(c′)2 holds for all c′ > cΓ. Then
we have that lim supn→∞ κc ≤ θ(c′)2 for each c′ > cΓ. Taking c′ ↓ cΓ and using the fact that
limc′↓cΓ θ(c

′) = 0 shows that limn→∞ κc = 0.
Fix c > cΓ and let t := bcn/|Γ|c. We are left to show (19). In other words, we wish to prove

that for some σ, σ′ ∈ Sn

lim inf
n→∞

W1(Xσ
t , X

σ′
t )

d(σ, σ′)
≥ 1− θ(c)2.

We will choose σ = id and σ′ = τ1◦τ2, where τ1, τ2 are independent uniformly chosen transpositions.
To prove the lower bound on the Kantorovitch distance we use the dual representation of the distance
W1(X,Y ) between two random variables X,Y :

W1(X,Y ) = sup{E[f(X)]− E[f(Y )] : f is Lipschitz with Lipschitz constant 1}. (41)
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Let f(σ) = d(id, σ) be the distance to the identity (using only transpositions, as usual). Then
observe that f is 1-Lipschitz. It suffices to show

lim inf
n→∞

E[f(Xτ1◦τ2
t )]− E[f(X id

t )] ≥ 2(1− θ(c)2). (42)

We will now show (42) by a coupling argument. Construct the two walks Xτ1◦τ2 and X id

as follows. Let γ1, γ2, . . . be a sequence of i.i.d. random variables uniformly distributed on Γ,
independent of (τ1, τ2). Using Lemma 2.4 with σ0 = τ1 ◦ τ2, which is independent of X id, we can
construct Xτ1◦τ2

t as
Xτ1◦τ2
t = γ1 ◦ · · · ◦ γt ◦ τ1 ◦ τ2.

Next we couple X id
t by constructing it as

X id
t = γ1 ◦ · · · ◦ γt.

Thus under this coupling we have that Xτ1◦τ2
t = X id

t ◦ τ1 ◦ τ2. Let X = X id, then from (42) the
problem reduces to showing

lim inf
n→∞

E[d(id, Xt ◦ τ1 ◦ τ2)− d(id, Xt)] ≥ 2(1− θ(c)2). (43)

We recall that a transposition can either induce a fragmentation or a coalescence of the cycles.
Indeed, a transposition involving elements from the same cycle generates a fragmentation of that
cycle, and one involving elements from different cycles results in the cycles being merged. (This
property is the basic tool used in the probabilistic analysis of random transpositions, see e.g. [5] or
[22]). Hence either τ1 fragments a cycle of Xt or τ1 coagulates two cycles of Xt. In the first case,
d(id, Xt ◦ τ1) = d(id, Xt ◦ τ1)− 1, and in the second case we have d(id, Xt ◦ τ1) = d(id, Xt ◦ τ1) + 1.
Let F denote the event that τ1 causes a fragmentation. Then

E[d(id, Xt ◦ τ1)− d(id, Xt)] = 1− 2P(F ).

Using the Poisson–Dirichlet structure described in Theorem 3.5 it is not hard to show that P(F )→
θ(c)2/2 (see, e.g., Lemma 8 in [3]). Applying the same reasoning to Xt ◦ τ1 ◦ τ2 and Xt ◦ τ1 we
deduce that

lim
n→∞

E[d(id, Xt ◦ τ1 ◦ τ2)− d(id, Xt)] = 2(1− θ(c)2)

from which the lower bound (43) and in turn (12) follow readily.

4.2 Proof of lower bound on curvature.

We now assume that c > cΓ and turn out attention to the lower bound on the Ricci curvature,
which is the heart of the proof. Throughout we let k = |Γ| and t = bcn/kc. With this notation in
mind we wish to prove that

lim sup
n→∞

sup
σ,σ′

Ed(Xσ
t , X

σ′
t )

d(σ, σ′)
≤ α := 1− θ(c)4

for some appropriate coupling of Xσ and Xσ′ , where the supremum is taken over all σ, σ′ with even
distance. Note that we can make several reductions: first, by vertex transitivity we can assume
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σ = id is the identity permutation. Also, by the triangle inequality (since W1 is a distance), we can
assume that σ′ = (i, j) ◦ (`,m) is the product of two distinct transpositions. There are two cases to
consider: either the supports of the transpositions are disjoint, or they overlap on one vertex. We
will focus in this proof on the first case where the support of the transpositions are disjoint; that
is, i, j, l,m are pairwise distinct. The other case is dealt with very much in the same way (and is in
fact a bit easier).

Clearly by symmetry Ed(X id
t , X

(i,j)◦(`,m)
t ) is independent of i, j, ` and m, so long as they are

pairwise distinct. Hence it is also equal to Ed(X id
t , X

τ1◦τ2
t ) conditioned on the event A that τ1, τ2

having disjoint support, where τ1 and τ2 are independent uniform random transpositions. This
event has an overwhelming probability for large n, thus it suffices to construct a coupling between
X id and Xτ1◦τ2 such that

lim sup
n→∞

Ed(X id
t , X

τ1◦τ2
t ) ≤ 2(1− θ(c)4). (44)

Indeed, it then immediately follows that the same is true with the expectation replaced by the
conditional expectation given A.

Next, let X be a random walk on Sn which is the composition of i.i.d. uniform elements of the
conjugacy class Γ. We decompose the random walk X into a walk X̃ which evolves by applying
transpositions at each step as follows. For t = 0, 1, . . . , write out

Xt = γ1 ◦ · · · ◦ γt

where γ1, γ2, . . . are i.i.d. uniformly distributed in Γ. As before we decompose each step γs of the
walk into a product of cyclic permutations, say

γs = γs,1 ◦ . . . ◦ γs,r (45)

where r =
∑

j≥2 kj . The order of this decomposition is irrelevant and can be chosen arbitrarily. For
concreteness, we decide that we start from the cycles of smaller sizes and progressively increase to
cycles of larger sizes. We will further decompose each of these cyclic permutation into a product of
transpositions, as follows: for a cycle c = (x1, . . . , xj), write

c = (x1, x2) ◦ . . . ◦ (xj−1, xj).

This allows to break any step γs of the random walk X into a number

ρ :=
∑
j

(j − 1)kj

of elementary transpositions, and hence we can write

γs = τ (1)
s ◦ · · · ◦ τ (ρ)

s (46)

where τ (j)
s are transpositions. Note that the vectors (τ

(i)
s ; 1 ≤ i ≤ ρ) in (46) are independent and

identically distributed for s = 1, 2, . . . and for a fixed s and 1 ≤ i ≤ ρ, τ (i)
s is a uniform transposition,

by symmetry. However it is important to observe that they are not independent. Nevertheless, they
obey a crucial conditional uniformity which we explain now. First we have differentiate between
the set of times when a new cycle starts and the set of times when we are continuing an old cycle.
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Definition 4.1 (Refreshment Times). We call a time s a refreshment time if s is of the form
s = ρ`+

∑m
j=2(j − 1)kj for some ` ∈ N ∪ {0} and m ∈ N\{1}.

We see that s is a refreshment time if the transposition being applied to X̃ at time s is the start
of a new cycle. Using this we can describe the law of the transpositions being applied to X̃.

Proposition 4.1 (Conditional Uniformity). For s ∈ N and i ≤ ρ, the conditional distribution of
τ

(i)
s given τ (1)

s , . . . , τ
(i−1)
s can be described as follows. We write τ (i)

s = (x, y) and we will distinguish
between the first marker x and the second marker y. There are two cases to consider:

(i) sρ+ i is a refreshment time and thus τ (i)
s corresponds to the start of a new cycle

(ii) sρ+ i is not a refreshment time and so τ (i)
s is the continuation of a cycle.

In case (i) x is uniformly distributed on Si := {1, . . . , n}\Supp(τ
(1)
s ◦ . . .◦ τ (i−1)

s ) and y is uniformly
distributed on Si \ {x}. In case (ii) x is equal to the second marker of τ (i−1)

s and y is uniformly
distributed in Si.

Note that in either case, the second marker y is conditionally uniformly distributed among the
vertices which have not been used so far. This conditional independence property is completely
crucial, and allows us to make use of methods (such as that of Schramm [22]) developed initially
for random transpositions) for general conjugacy classes, so long as |Γ| = o(n). Indeed in that case
the second marker y itself is not very different from a uniform random variable on {1, . . . , n}.

We will study this random walk using this new transposition time scale. We thus define a process
X̃ = (X̃u : u = 0, 1, . . .) as follows. Let u ∈ {0, 1, . . .} and write u = sρ+i where s, i are nonnegative
integers and i < ρ. Then define

X̃u := Xs ◦ τ (1)
s+1 ◦ · · · ◦ τ

(i)
s+1. (47)

Thus it follows that for any s ≥ 0, X̃sρ = Xs. Notice that X̃ evolves by applying successively
transpositions with the above mentioned conditional uniformity rules.

Now consider our two random walks, X id and Xτ1◦τ2 respectively, started respectively from
id and τ1 ◦ τ2, and let X̃ id and X̃τ1◦τ2 be the associated processes constructed using (47), on the
transposition time scale. Thus to prove (44) it suffices to construct an appropriate coupling between
X̃ id
tρ and X̃τ1◦τ2

tρ . Next, recall that for a permutation σ ∈ Sn, X(σ) denotes the renormalised cycle
lengths of σ, taking values in Ω∞ defined in (40). The walks X̃ id and X̃τ1◦τ2 are invariant by
conjugacy and hence both are distributed uniformly on their conjugacy class. Thus ultimately it
will suffice to couple X(X̃ id

tρ) and X(X̃τ1◦τ2
tρ ).

Fix δ > 0 and let ∆ = dδ−9e. Define

s1 = b(cn− δ−9)/kcρ
s2 = s1 + ∆

s3 = tρ.

Our coupling consists of three intervals [0, s1], (s1, s2] and (s2, s3].
Let us informally describe the coupling before we give the details. In what follows we will couple

the random walks X̃ id and X̃τ1◦τ2 such that they keep their distance constant during the time
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intervals [0, s1] and (s2, s3]. In particular we will see that at time s1, the walks X̃ id and X̃τ1◦τ2 will
differ by two independently uniformly chosen transpositions. Thus at time s1 most of the cycles
of X̃ id and X̃τ1◦τ2 are identical but some cycles may be different. We will show that given that
the cycles that differ at time s1 are all reasonably large, then we can reduce the distance between
the two walks to zero during the time interval (s1, s2]. Otherwise if one of the differing cycles is
not reasonably large, then we couple the two walks to keep their distance constant during the time
interval [0, s1], (s1, s2] and (s2, s3].

More generally, our coupling has the property that d(X id
t , X

τ1◦τ2
t ) is uniformly bounded, so

that it will suffice to concentrate on events of high probability in order to get a bound on the
L1-Kantorovitch distance W (X id

t , X
τ1◦τ2
t ).

4.2.1 Coupling for [0, s1]

First we describe the coupling during the time interval [0, s1]. Let X̃ = (X̃s : s ≥ 0) be a walk with
the same distribution as X̃ id, independent of the two uniform transpositions τ1 and τ2. Then we
have that by Lemma 2.4 for any s ≥ 0, X̃τ1◦τ2

s has the same distribution as X̃s ◦ τ1 ◦ τ2. Thus we
can couple X(X̃ id

s1) and X(X̃τ1◦τ2
s1 ) such that

X(X̃ id
s1) = X(X̃s1)

X(X̃τ1◦τ2
s1 ) = X(X̃s1 ◦ τ1 ◦ τ2). (48)

4.2.2 Coupling for (s1, s2]

For s ≥ 0 define X̄s = X(X̃ id
s+s1) and Ȳs = X(X̃τ1◦τ2

s+s1 ). Here we will couple X̄s and Ȳs for s = 0, . . . ,∆.
We create a matching between X̄s and Ȳs by matching an element of X̄s to at most one element
of Ȳs of the same size. At any time s there may be several entries that cannot be matched. By
parity the combined number of unmatched entries is an even number, and observe that this number
cannot be equal to two. Now X̃ id

s1 and X̃τ1◦τ2
s1 differ by two transpositions as can be seen from (48).

This implies that in particular initially (i.e., at the beginning of (s1, s2]), there are four, six or zero
unmatched entries between X̄0 and Ȳ0.

Fix δ > 0 and let A(δ) denote the event that the smallest unmatched between X̄0 and Ȳ0 has
size greater than δ > 0. We will show that on the event A(δ) we can couple the walks such that
X̄∆ = Ȳ∆ with high probability. On the complementary event A(δ)c, couple the walks so that their
distance remains 1 during the time interval (s1, s2], similar to the coupling during [0, s1].

It remains to define the coupling during the time interval (s1, s2] on the event A(δ). We begin
by estimating the probability of A(δ).

Lemma 4.2. For any c > 1 and δ > 0,

lim inf
n→∞

P(A(δ)) ≥ [θ(c)(1− δ)]4.

Proof. Recall that by construction X̄0 and Ȳ0 only differ because of the two transpositions τ1 and
τ2 appearing in (48).

Recall the hypergraph Hs1/ρ on {1, . . . , n} defined in the beginning of Section 3.1. Since c > cΓ,
Hs1/ρ has a (unique) giant component with high probability. Let A1 be the event that the four points
composing the transpositions τ1, τ2 fall within the largest component of the associated hypergraph
Hs1/ρ. It follows from Theorem 3.5 that conditionally on the event A1, A(δ) has probability greater

23



than (1− δ)4. Also, since the relative size of the giant component converges in probability θ(c) by
Lemma 3.1, it is obvious that P(A1)→ θ(c)4 and thus the lemma follows.

Recall that the transpositions which make up the walks X̃ id and X̃τ1◦τ2 obey what we called
conditional uniformity in Proposition 4.1. For the duration of (s1, s2] we will assume the relaxed
conditional uniformity assumption, which we describe now.

Definition 4.2 (Relaxed Conditional Uniformity). For s = s1 + 1, . . . , s2 suppose we apply the
transposition (x, y) at time s. Then

(i) if s is a refreshment time then x is chosen uniformly in {1, . . . , n},

(ii) if s is not a refreshment time then x is taken to be the second marker of the transposition
applied at time s− 1.

In both cases we take y to be uniformly distributed on {1, . . . , n}\{x}.

In making the relaxed conditional uniformity assumption we are disregarding the constraints
on (x, y) given in Proposition 4.1. However the probability we violate this constraint at any point
during the interval (s1, s2] is at most 2(s2 − s1)ρ/n = 2∆k/n and on the event that this constraint
is violated the distance between the random walks can increase by at most (s2−s1) = ∆. Hence we
can without a loss of generality assume that during the interval (s1, s2] both X̃ id and X̃τ1◦τ2 satisfy
the relaxed conditional uniformity assumption.

Now we show that on the event A(δ) we can couple the walks such that X̄∆ = Ȳ∆ with high
probability. The argument uses a coupling of Berestycki, Schramm, Zeitouni [6], itself a variant of
a beautiful coupling introduced by Schramm [22]. We first introduce some notation. Let

Ωn := {(x1 ≥ · · · ≥ xn) : xi ∈ {0/n, 1/n, . . . , n/n} for each i ≤ n and
∑
i≤n

xi = 1}.

Notice that the walks X̄ and Ȳ both take values in Ωn.
Let us describe the evolution of the random walk X̄ = (X̄s : s = 0, 1, . . . ). Suppose that s ≥ 0

and X̄s = x̄ = (x1, . . . , xn). Now imagine the interval (0, 1] tiled using the intervals (0, x1], . . . , (0, xn]
(the specific tiling rule does not matter). Initially for s = 0 we select u ∈ {1/n, . . . , n/n} uniformly
at random and then call the tile that u falls into marked. Next if s ≥ 1 is not a refreshment time
then we keep marked the tile which was marked in the previous step. Otherwise if s ≥ 1 is a
refreshment time we select a new marked tile by selecting u ∈ {1/n, . . . , n/n} uniformly at random
and marking the tile which u falls into.

Let I be the marked tile. Select v ∈ {2/n, . . . , n/n} uniformly at random and let I ′ be the
tile that v falls in. Then if I ′ 6= I then we merge the tiles I and I ′. The new tile we created is
now marked. If I = I ′ then we split I into two tiles, one of size v − 1/n and the other of size
|I| − (v− 1/n). The tile of size v is now marked. Now X̄s+1 is the sizes of the tiles in the new tiling
we have created, ordered in decreasing order.

The evolution of X̄ described above corresponds to the evolution of X as follows. Suppose we
apply the transposition (x, y) to Xs in order to obtain Xs+1. The marked tile at time s corresponds
to the cycle of Xs containing x: if s is a refreshment time then x ∈ {1, . . . , n} is chosen uniformly,
otherwise x is the second marker from the previous step. Then we write the cycle containing x as
(x, x1, . . . , xm) and so the point x corresponds to 1/n in the tiling. Then we select the second marker
y ∈ {1, . . . , n}\{x} uniformly which corresponds to the selection of the marker v ∈ {2/n, . . . , n/n}.

24



Before we describe the coupling in detail let us make a remark. In the course of the coupling
there may be several things that may go wrong; for example the size of the smallest unmatched
component may become too small. We will estimate the probability of such unfortunate events and
see that these tend to zero when we take n→∞ and then δ → 0. The coupling which we describe
keeps the distance between walks X id and Xτ1◦τ2 bounded by 4, hence we can safely ignore these
unfortunate events.

We now recall the coupling of [6]. Let s ≥ 0. Suppose that X̄s = x̄ = (x1, . . . , xn) and
Ȳs = ȳ = (y1, . . . , yn). Then we can differentiate between the entries that are matched and those
that are unmatched: recall that two entries from x̄ and ȳ are matched if they are of identical size.
Our goal will be to create as many matched parts as possible and as quickly as possible. Let Q be
the total mass of the unmatched parts in either x̄ or ȳ. When putting down the tilings x̃ and ỹ,
associated with x̄ and ȳ respectively, we will do so in such a way that all matched parts are at the
right of the interval (0, 1] and the unmatched parts occupy the left part of the interval. Initially
for s = 0 suppose that u ∈ {1/n, . . . , n/n} is chosen uniformly and call the tile that u falls into in
each of x̃ and ỹ, marked. As before if s ≥ 1 is not a refreshment time then we keep marked the tiles
which were marked in the previous step. Otherwise if s ≥ 1 is a refreshment time we select new
marked tiles in both x̃ and ỹ by selecting u ∈ {1/n, . . . , n/n} uniformly at random and marking the
tiles which u falls into in each of x̃ and ỹ.

Let Ix̄ and Iȳ be the respective marked tiles of the tilings x̃ and ỹ, and let x̂, ŷ be the tiling
which is the reordering of x̃, ỹ in which Ix̄ and Iȳ have been put to the left of the interval (0, 1]. Let
a = |Ix̄| and let b = |Iȳ| be the respective lengths of the marked tiles, and assume without loss of
generality that a < b. Let v ∈ {2/n, . . . , n/n} be chosen uniformly. We will apply v to x̂ as we did
in the transition above and obtain X̄s+1. We now describe how construct an other uniform random
variable v′ ∈ {2/n, . . . , n/n} which will be applied to ŷ. If Ix̄ is matched (which implies that Iȳ
is also matched) then we take v′ = v as in the coupling of Schramm [22]. In the case when Ix̄ is
unmatched (which implies Iȳ is also unmatched) in the coupling of Schramm one again takes v = v′,
here we do not take them equal and apply to v a measure-preserving map Φ, defined as follows.

For w ∈ {2/n, . . . , n/n} consider the map

Φ(w) =


w if w > b or if 1/n ≤ w ≤ γn + 1/n,

w − γn if a < w ≤ b,
w + b− a if γn + 1/n < w ≤ a,

(49)

where γn := dan/2 − 1e/n. It is not hard to check that Φ is measure preserving, thus letting
v′ = Φ(v) we have that v′ has the correct marginal distribution.

If v /∈ Ix̄ then we merge the tile containing v and Ix̄. The new tile is now marked. If v ∈ Ix̄ we
split the tile Ix̄ into two tiles, one of length v − 1/n and one of length a− (v − 1/n). We mark the
tile of size v − 1/n. Now X̄s+1 is the sizes of the tiles in the new tiling we have created, ordered in
decreasing order. We obtain Ȳs+1 from the same procedure as we did to obtain X̄s+1, but we use
v′ instead of v. We give an example of an evolution under this coupling in Figure 1

The somewhat remarkable property of this coupling is that the number of unmatched entries can
only decrease. Unmatched entries disappear when they are coalesced. In particular they disappear
quickly when their size is reasonably large. Hence it is particularly desirable to have a coupling
in which unmatched components stay large. The second crucial property of this coupling is that
it does not create arbitrarily small unmatched entries: even when unmatched entry is fragmented,

25



u v

v′
v

v′

Figure 1: The evolution under the coupling between X̄ and Ȳ . The red entries represent the marked
entries.

the size of the smallest unmatched entry cannot decrease by more than a factor of two. This is
summarised by the following, which is Lemma 19 from [6].

Lemma 4.3. Let U be the size of the smallest unmatched entry in two partitions x̄, ȳ ∈ Ωn, let
x̄′, ȳ′ be the corresponding partitions after one transposition of the coupling, and let U ′ be the size
of the smallest unmatched entry in x̄′, ȳ′. Assume that 2j ≤ U < 2j+1 for some j ≥ 0. Then it is
always the case that U ′ ≥ U/2− 1/n, and moreover,

P(U ′ ≤ 2j) ≤ 2j+2/n.

Finally, the combined number of unmatched parts may only decrease.

Remark 4.4. In particular, it holds that U ′ ≥ 2j−1/n.

We now explain our strategy. On A(δ) we will expect that the unmatched components will
remain of a size roughly of order at least δ for a while. In fact we will show that they will stay at
least as big as O(δ2) for a long time. Unmatched entries disappear when they are merged together.
If all unmatched entries are of size at least δ2, we will see that with probability at least δ8, we have
a chance to reduce the number of unmatched entries in every 4 steps. Then a simple argument
shows that after time ∆ = dδ−9e, X̄∆ and Ȳ∆ are perfectly matched with a probability tending to
one as δ → 0.

Lemma 4.5. There is δ0 such that if δ < δ0, during [0,∆], both X̄s and Ȳs always have an entry
of size greater than δθ(c) with probability at least 1− 2δ1/2 for all n sufficiently large.

Proof. Let δ0 > 0 be such that (1 − δ0)9! ≥ δ
1/2
0 and assume that δ < δ0. Hence it also true that

(1− δ)9! ≥ δ1/2. Let Z = (Z1, . . .) be a Poisson-Dirichlet random variable on Ω∞ and let (Z∗1 , . . . )
denote the size biased ordering of Y . Recall that Z∗1 is uniformly distributed over [0, 1], Z∗2 is
uniformly distributed on [0, 1−Z∗1 ], and so on. For the event {Z1 ≤ δ} to occur it is necessary that
Z∗1 ≤ δ, Z∗2 ≤ δ/(1− δ), . . . , Z∗10 ≤ δ/(1− δ)9. This has probability at most δ10/(1− δ)9!. Note that
since δ < δ0, we have that (1− δ)9! ≥ δ1/2. Thus

P(Z1 ≤ δ) ≤
δ10

(1− δ)9!
≤ δ9+1/2.
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Summing over ∆ = O(δ−9) steps we see that the expected number of times during the interval [0,∆]
such that X̄s or Ȳs don’t have a component of size at least θ(c)δn is less than δ1/2 as n → ∞ and
is thus less than 2δ1/2 for n sufficiently large, by Theorem 3.5 (note that we can apply the result
because this calculation involves only a finite number of components). The result follows.

We now check that all unmatched components really do stay greater than δ2 during [0,∆]. Let
Tδ denote the first time s that either X̄s or Ȳs have no cycles greater than δθ(c)n.

Lemma 4.6. On A(δ), for all s ≤ Tδ ∧ ∆, all unmatched components stay greater than δ2 with
probability at least 1− δ(16/θ(c))10.

Proof. Say that an integer k is in scale j if 2j/n ≤ k < 2j+1/n. For s ≥ 0, let U(s) denote the
scale of the smallest unmatched entry of X̄s, Ȳs. Let j0 be the scale of δ, and let j1 be the integer
immediately above the scale of δ2.

Suppose for some time s ≤ Tδ, we have U(s) = j with j1 ≤ j ≤ j0, and the marked tile at time s
corresponds to the smallest unmatched entry. Then after this transposition we have U(s+1) ≥ j−1
by the properties of the coupling (Lemma 4.3). Moreover, U(s+1) = j−1 with probability at most
rj = 2j+2/n. Furthermore, since s ≤ Tδ, we have that this marked tile merges with a tile of size
at least θ(c)δ with probability at least θ(c)δ after the transposition. We call the first occurrence a
failure and the second a mild success.

Once a mild success has occurred, there may still be a few other unmatched entries in scale j,
but no more than five since the total number of unmatched entries is decreasing. And therefore if
six mild successes occur before a failure, we are guaranteed that U(s + 1) ≥ j + 1. We call such
an event a good success, and note that the probability of a good success, given that U(s) changes
scale, is at least pj = 1− 6rj/(rj + θ(c)δ). We call qj = 1− pj .

Let {qi}i≥0 be the times at which the smallest unmatched entry changes scale, with q0 being
the first time the smallest unmatched entry is of scale j0. Let {Ui} denote the scale of the smallest
unmatched entry at time qi. Introduce a birth-death chain on the integers, denoted vn, such that
v0 = j0 and

P(vn+1 = j − 1|vn = j) =


1 if j = j0
0 if j = j1
qj otherwise,

(50)

and

P(vn+1 = j + 1|vn = j) =

{
pj , j > j1

0, j = j1.
(51)

Then it is a consequence of the above observations that (Ui, i ≥ 1) is stochastically dominating
(vi, i ≥ 1) for s ≤ Tδ. Set τj = min{n > 0 : vn = j}. An analysis of the birth-death chain defined
by (50), (51) gives that

Pj0(τj1 < τj0) =
1∑j0

j=j1+1

∏j0−1
m=j

pm
qm

≤
j0−1∏
j=j1+1

qj
pj

(see, e.g., Theorem (3.7) in Chapter 5 of [10]). Thus, by considering the 10 lowest terms in the
product above (and note that for δ > 0 small enough, there are at least 10 terms in this product),
we deduce that Pj0(τj1 < τj0) decays faster than (16δ/θ(c))10. Since Tδ ∧ ∆ ≤ ∆ = O(δ−9) we
conclude that the probability that U(s) = j1 before Tδ ∧∆ is at most δ(16/θ(c))10.
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We are now going to prove that on the event A(δ), after time ∆ there are no unmatched with
probability tending to one as n→∞ and δ → 0. The basic idea is that there are initially at most
six unmatched parts, and this number cannot increase.

Lemma 4.7. We have that for all δ > 0 small enough

lim
δ→0

lim sup
n→∞

P(X̄∆ 6= Ȳ∆|A(δ)) = 0

Proof. Suppose δ > 0 is sufficiently small and condition throughout on the event A(δ). Let T ′δ be
the first time one of the unmatched entries is smaller than δ2 or Tδ, whichever comes first. By
Lemma 4.5 and Lemma 4.6 we have that for large n,

P(T ′δ ≥ ∆|A(δ)) ≥ 1− δ(16/θ(c))10 − 2δ1/2. (52)

Henceforth condition on the event {T ′δ ≥ ∆}. Initially there are at most 6 unmatched entries.
Due to parity there can be either 6, 4 or 0 unmatched entries (note in particular that 2 is excluded,
as a quick examination shows that no configuration can give rise to two unmatched entries). Fur-
thermore, by the virtue of the coupling the number of unmatched entries either remains the same
or decreases sequentially. Once all the entries are matched they remain matched thereon. In order
for the unmatched entries to decrease at time s ∈ {2, . . . ,∆} it must be the case that both X̄s and
Ȳs must have at least 2 unmatched entries. Call this a good configuration. Let Fs be the event
that at time s the configuration is good and one of the two marked tiles at time s is the smallest
unmatched tile.

We now show that P(Fs) ≥ δ4/2 by considering different cases:

• Suppose that at time s − 1 the configuration is good. Then placing the second marker (v or
v′) inside the smallest unmatched tile will guarantee that at time s the configuration is still
good. Suppose without loss of generality that v lands in the smallest unmatched tile, then it
could be the case that at time s − 1 the smallest unmatched tile was marked. In this case
the smallest unmatched tile will fragment into two and the smaller of the two pieces will be
matched and the resulting tile on the left will be marked. If a is the size of the smallest entry
and v ∈ [a/2, a] then both marked tiles at time s will be unmatched and furthermore of them
will correspond to the smallest unmatched entry at time s. Hence the probability that Fs
holds in this case is at least δ2/2.

• Suppose that the configuration at time s − 1 is bad: that is, one copy has one unmatched
entry and the other copy has either three or five unmatched entries. Suppose, without a loss
of generality that X̄s−1 has one unmatched entry which means that Ȳs−1 has at least three
unmatched entries. To get to a good configuration at time s it suffices to coagulate two of the
unmatched entries of Ȳs−1 (as then automatically, by the properties of the coupling, the single
unmatched entry in X̄s−1 fragments into two). In order for this to happen, the marked tiles
at time s− 1 must be unmatched. We force the marked entries at time s− 1 to be unmatched
as follows.

– If s− 1 is a refreshment time then we ask that the marker u at time s− 1 falls inside an
unmatched tile which is not the smallest unmatched tile. This happens with probability
at least δ2.

28



– If s−1 is not a refreshment time then we ask for the marker v and v′ at time s−2 to fall
inside an unmatched tile which is not the smallest unmatched tile. This happens with
probability at least δ2. As before, once the markers v and v′ fall inside unmatched tiles
the probability that the marked tile at time s− 1 is unmatched is 1/2.

Suppose now that at s−1 the marked tiles are unmatched but neither is the smallest unmatched
tile. If the marker v or the marker v′ at time s − 1 falls inside the smallest unmatched tile
then we are guaranteed that Fs holds and this happens with probability at least δ2. Hence we
see that the probability that Fs holds when the configuration at time s− 1 is bad is at least
δ4/2.

We have just shown that P(Fs) ≥ δ4/2.
Now suppose Fs holds. With probability greater than δ2 we have that one of the marked tiles

at time s is the smallest unmatched tile (in fact the probability is 1 if s is not a refreshment time).
Since there are at least 2 unmatched parts in each copy, let R be the tile corresponding to a second
unmatched tile in the copy that contains the larger of the two marked tiles. Then |R| > δ2, and
moreover when v falls in R, we are guaranteed that a coagulation is going to occur in both copies
hence decreasing the total number of unmatched entries. Let Ks denote this event and call this a
success. Thus we have just shown that P(Ks|Fs) ≥ δ4.

Notice that for s ∈ {2, . . . ,∆} we have that the marked tiles and the markers (v, v′) used in
the transition from time s + 1 to s + 2 are independent from Fs := σ((X̄`, Ȳ`) : ` ≤ s). Thus
we can repeat the same argument as before to obtain that for any s ∈ {1, . . . , b(∆ − 1)/4c} we
have that P(K4s ∩ F4s|F4s−2) ≥ δ8/2. Hence it follows that the number of successes before time
∆ stochastically dominates a random variable H which has the binomial distribution Bin(b(∆ −
1)/4c, δ8/2). The event that {X∆ 6= Y∆} implies that there has been at most one success. Thus for
δ > 0 small enough

P(X̄∆ 6= Ȳ∆|A(δ) ∩ {T ′δ ≥ ∆}) ≤ P(H ≤ 1) ≤ ∆(1− δ8/2)b(∆−1)/4c.

As ∆ = O(δ−9), the right hand side of the equation above converges to 0 as δ ↓ 0 and using (52)
finishes the proof.

4.2.3 Coupling for (s2, s3]

The walks X̃ id and X̃τ1◦τ2 are uniformly distributed on their conjugacy class. Thus one can couple
X̃ id and X̃τ1◦τ2 so that

• on the event A(δ)c we have that d(X̃ id
s2 , X̃

τ1◦τ2
s2 ) = 2,

• we have that using Lemma 4.7

lim inf
δ↓0

lim inf
n→∞

P(X̃ id
s2 = X̃τ1◦τ2

s2 |A(δ)) = 1,

• on the event {X̃ id
s2 6= X̃τ1◦τ2

s2 }, note that the walks X̄ and Ȳ have at most 6 unmatched entries.
Hence there exists a coupling such that d(X̃ id

s2 , X̃
τ1◦τ2
s2 ) ≤ 4.

Combining this with Lemma 4.2 we have just shown the following lemma.
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Lemma 4.8. There exists a coupling of X̃ id and X̃τ1◦τ2 such that

lim sup
δ↓0

lim sup
n→∞

E[d(X̃ id
s2 , X̃

τ1◦τ2
s2 )] ≤ 2(1− θ(c)4)

The theorem now follows immediately.

Proof of Theorem 1.2. It remains to see the coupling during the time interval (s2, s3]. During this
time interval we apply the same transpositions to both X̃ id and X̃τ1◦τ2 which keeps their distance
constant throughout (s2, s3]. Thus we have that

d(X id
t , X

τ1◦τ2
t ) = d(X̃ id

s3 , X̃
τ1◦τ2
s3 ) = d(X̃ id

s2 , X̃
τ1◦τ2
s2 ).

Thus using Lemma 4.8 we see that (44) holds which finishes the proof.
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A Lower bound on mixing

In this section we give a proof of the lower bound on tmix(δ) for some arbitrary δ ∈ (0, 1). This
is for the most part a well-known argument, which shows that the number of fixed points at time
(1− ε) tmix is large. In the case of random transpositions or more generally of a conjugacy class Γ
such that |Γ| is finite, this follows easily from the coupon collector problem. When |Γ| is allowed to
grow with n, we present here a self-contained argument for completeness.

Let Γ ⊂ Sn be a conjugacy class and set k = k(n) = |Γ|.

Lemma A.1. We have that for any ε ∈ (0, 1),

lim
n→∞

dTV ((1− ε) tmix) = 1
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Proof. Let Km ⊂ Sn be the set of permutations which have at least m fixed points. Recall that
µ is the invariant measure, which is a uniform probability measure on Sn or An depending on the
parity of Γ. Let U denote the uniform measure on Sn. Either way,

µ(Km) ≤ 2U(Km).

Now, U(Km)→
∑∞

j=m e
−1 1

j! as n→∞, hence we deduce that

lim sup
m→∞

lim sup
n→∞

µ(Km) = 0. (53)

Fix β > 0 and let

tβ =
1

k
n(log n− log β).

Assume that β is such that tβ is an integer. For each i ≥ 0, γi write N(γi) ⊂ {1, . . . , n} for the set
of non-fixed points of γi. Then we have that for each i ≥ 0, |N(γi)| = k and further {N(γi)}∞i=1 are
i.i.d. subsets of {1, . . . , n} chosen uniformly among the subsets of size k = |Γ|.

Consider for 1 ≤ i ≤ n the event Ai that the i-th card is not collected by time tβ , that is
i /∈
⋃tβ
`=1N(γ`). Thus for 1 ≤ i1 < · · · < i` ≤ n and ` ≤ n− k,

P(Ai1 ∩ · · · ∩Ai`) =

((
n−`
k

)(
n
k

) )tβ .
Let N = N(n) ∈ N be increasing to infinity such that N2 = o(n) and N = o(n2k−2). Then by the
inclusion-exclusion formula we have that

P(A1 ∪ · · · ∪AN ) =

N∑
`=1

(−1)`+1

(
n

`

)((n−`
k

)(
n
k

) )tβ . (54)

Writing out the fraction of binomials on the right hand side we have(
1− k

n− `

)`tβ
≤

((
n−`
k

)(
n
k

) )tβ ≤ (1− k

n

)`tβ
.

Now −x/(1− x) ≤ log(1− x) ≤ −x for x ∈ (0, 1) thus we have that

exp

(
−

`ktβ
n− k − `

)
≤

((
n−`
k

)(
n
k

) )tβ ≤ exp

(
−
`ktβ
n

)
. (55)

On the other hand we have that
(n− `)`

`!
≤
(
n

`

)
≤ n`

`!
. (56)

Note that ne−tβk/n = β, then combining (55) and (56) we get(
1− `

n

)`
exp

(
−
k(k + `)`tβ
n(n− k − `)

)
β`

`!
≤
(
n

`

)((n−`
k

)(
n
k

) )tβ ≤ β`

`!
. (57)
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Let us lower bound the error term on the left hand side of (57). First (1− `/n)` ≥ e−`2/(n−`), hence
it follows that

inf
`≤N

(
1− `

n

)`
exp

(
−
k(k + `)`tβ
n(n− k − `)

)
≥ inf

`≤N
exp

(
− `2

n− `
−

k(k + `)`tβ
n(n− k − `)

)
.

It is easy to see that the right hand side above converges to 1 as n → ∞. Using this and (57) it
follows that

lim
n→∞

N∑
`=1

(−1)`+1

(
n

`

)((n−`
k

)(
n
k

) )tβ = lim
n→∞

N∑
`=1

(−1)`+1β
`

`!
= 1− e−β.

For integers a < b let Let K[a,b] = Aa+1 ∪Aa+2 ∪ . . . Ab. Then we have shown

lim inf
n→∞

P(Xtβ ∈ K[1,N ]) ≥ 1− e−β.

Likewise, for any j < bn/Nc,

lim inf
n→∞

P(Xtβ ∈ K[jN,(j+1)N ]) ≥ 1− e−β.

Hence
lim inf
n→∞

P(Xtβ ∈ ∩
m
j=1K[jN,(j+1)N ]) ≥ 1−me−β.

Let ε > 0. Then for any β > 0, if t = (1− ε) tmix then t < tβ for n sufficiently large, and hence

lim inf
n→∞

P(Xt ∈ ∩mj=1K[jN,(j+1)N ]) = 1.

But it is obvious that ∩mj=1K[jN,(j+1)N ] ⊂ Km and hence for t = (1− ε) tmix,

lim inf
n→∞

P(Xt ∈ Km) = 1. (58)

Comparing with (53) the result follows.

B Proof of Theorem 3.5

Let Γ ⊂ Sn be a conjugacy class with cycle structure (k2, k3, . . . ). Let X = (Xt : t = 0, 1, . . . ) be
a random walk on Sn which at each step applies an independent uniformly random element of Γ.
Let ρ =

∑
j(j − 1)kj and let X̃ be the transposition walk associated to the walk X using (47). In

particular for t ≥ 0, X̃tρ = Xt. Finally let Z = (Z1, Z2, . . . ) denote a Poisson–Dirichlet random
variable.

For convenience we restate Theorem 3.5 here.

Theorem B.1. Let s ≥ 0 be such that sk/(nρ) → c for some c > cΓ. Then for each m ∈ N we
have that as n→∞, (

X̄1(X̃s)

θ(c)
, . . . ,

X̄m(X̃s)

θ(c)

)
→ (Z1, . . . , Zm)

in distribution where θ(c) is given by (20).
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The proof of this result is very similar to the proof of Theorem 1.1 in [22]. We give the details
here.

Recall the hypergraph process H = (Ht : t = 0, 1, . . . ) associated with the walk X defined in
Section 3.1. Analogously let G̃ = (G̃t : t = 0, 1, . . . ) be a process of graphs on {1, . . . , n} such that
the edge {x, y} is present in G̃t if and only if the transposition (x, y) has been applied to X̃ prior
to and including time t. Hence we have that for each t = 0, 1, . . . , G̃tρ = Ht.

Recall that X̃ satisfies conditional uniformity as described in Proposition 4.1. Using the graph
process G̃ above and the conditional uniformity of X̃ the following lemma, which is the analogue of
Lemma 2.4 in [22], follows almost verbatim from Schramm’s arguments.

Lemma B.2. Let s ≥ 0 be such that sk/(nρ) → c for some c > cΓ and let ε ∈ (0, 1/8). Let
M = M(ε, n, s) be the minimum number of cycles of X̃s which are needed to cover at least (1 − ε)
proportion of the vertices in the giant component of G̃s. Then for α ∈ (0, 1/8) we have that

lim sup
n→∞

P(M > α−1| log(αε)|2) ≤ Cα

for some constant C which does not depend on α nor ε.

Henceforth fix some time s ≥ 0 such that sk/(nρ) → c for some c > cΓ. Fix ε ∈ (0, 1/8) and
define

∆ := bε−1c
s0 := s−∆.

For t = 0, . . . ,∆ define X̄t = X(X̃s0+t). We can assume that for t ≤ ∆, X̃s0+t satisfies the relaxed
conditional uniformity assumption described in Definition 4.2. Indeed by making this assumption
we are disregarding the constraint on the transpositions described in Proposition 4.1 applied to X̃t

for t = s0, . . . , s. However the probability that we violate this constraint is at most 2∆k/n.
Colour an element of X̄0 = X(X̃s0) green if the cycle whose renormalised cycle length is this

element lies in the giant component of G̃s0 . We colour all the other elements of X̄0 red. Thus
asymptotically in n, the sum of the green elements is θ(c) and the sum of the red elements is
1− θ(c). In the evolution of (X̄t : t = 0, 1, . . . ) we keep the colour scheme as follows. If an element
fragments, both fragments retain the same colour. If we coagulate two elements of the same colour
then the new element retains the colour of the previous two elements. If we coagulate a green
element and a red element, then the colour of the resulting element is green.

Define X̄ ′ = (X̄ ′t : t = 0, . . . ,∆) and X̄ ′′ = (X̄ ′′t : t = 0, . . . ,∆) as follows. Initially X̄ ′0 =
X̄ ′′0 = X̄0. Apply the same colouring scheme to X̄ ′ and X̄ ′′ as we did to X̄. Each step evolution is
described as follows. Then the walks evolve as follows.

• X̄ ′t: Evolves the same as X̄ except we ignore any transition which involves a red entry.

• X̄ ′′t : Evolves the same as X̄ ′ except that the markers u, v used in the transitions of X̄ ′′ are
distributed uniformly on [0, 1].

Lemma 3.1 states that the second largest component of G̃s0 has size o(n). Hence, initially each
red element has size o(1) as n→∞. Now ∆ does not increase with n, hence for any s = 0, 1, . . . ,∆,
we are unlikely to make a coagulation (or fragmentation) in X̄ ′s without coagulating (or fragmenting)
entries of X̄s of similar size. Similar considerations for the processes X̄ ′ and X̄ ′′ leads to the following
lemma.
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Lemma B.3. There exists a coupling between the walks X̄ and X̄ ′, and between X̄ ′ and X̄ ′′ such
that for each η > 0,

lim
n→∞

P
(

sup
i∈N
|X̄i(∆)− X̄ ′i(∆)| > η

)
= lim

n→∞
P
(

sup
i∈N
|X̄ ′i(∆)− X̄ ′′i (∆)| > η

)
= 0.

Using the preceding lemma, it suffices now to find an appropriate coupling between X̄ ′′ and Z.
To do this we modify Schramm’s coupling in [22]. First we let {J1, . . . , JL} be the set of times
s ∈ {0, . . . ,∆} such that that X̄ ′′s−1 6= X̄ ′′s . It is easy to see that limn→∞ P(L >

√
∆) = 1 and

henceforth we will condition on the event that {L >
√

∆} and set ∆′ = b
√

∆c. Define a process
Ȳ = (Ȳt : t = 0, . . . ,∆′) as follows. Initially Ȳ0 = X̄ ′′0 . For t = 1, . . . ,∆′ we let Ȳt be X ′′Jt
renormalised so that

∑
i Ȳi(t) = 1 where Ȳi(t) is the i-th element of Ȳt.

We define a process Z̄ = (Zt : t = 0, 1, . . . ,
√

∆) as follows. Initially Z0 has the distribution of a
Poisson–Dirichlet random variable, independent of Ȳ . Then for t = 1, . . . ,∆′ define Z̄t by applying
the coupling in Section 4.2.2 to Ȳ and Z̄ but with the following modifications:

• the markers u, v ∈ [0, 1] are taken uniformly at random,

• we always take v′ = v,

• we modify the definition of a refreshment time: s is a refreshment time if either Js−1 + 2 ≤ Js
or Js + s0 is a refreshment time in the sense of Definition 4.1,

• when a marked tile of size a fragments, it creates a tile of length v and a tile of length a− v.
We mark the tile of length a− v.

It is not hard to check that the Poisson–Dirichlet distribution is invariant under this evolution and
hence we have that for each t = 0, 1, . . . ,∆′, Zt has the law of a Poisson–Dirichlet.

Our coupling agrees with the coupling in [22, Section 3] when Γ = T is the set of all transposi-
tions. In this case each time s is a refreshment time and hence the marked tile at time s is always
chosen by the marker u. One can adapt the arguments in Chapter 3 of Schramm’s paper to our
case by using the following idea. Note first that all the estimates of Schramm apply at s when s is
a refreshment time. When s is not a refreshment time and Schramm considers the event that the
marker u at time s falls inside an unmatched tile, instead we consider the event that the marker v
at time s− 1 falls inside an unmatched tile. By the properties of the coupling, this guarantees that
at time s the marked tile is unmatched.

Adapting Schramm’s arguments leads to the following lemma, which is the analogue of [22,
Corollary 3.4].

Lemma B.4. Define

N0 := #{i ∈ N : Ȳi(0) > ε}+ #{i ∈ N : Z̄i(0) > ε}

and let

ε̄ := ε+
∞∑
i=1

Ȳi(0)1{Ȳi(0)<ε} +
∞∑
i=1

Z̄i(0)1{Z̄i(0)<ε}.

Define the event

B =

{
ε̄4/5 ≤ 1

∆′
≤ ε̄1/5

N0 ∨ 1

}
.
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Let q ∈ {1, . . . ,∆′} be distributed uniformly, independent of the processes Ȳ and Z̄. Then we have
that for each ρ > 0,

P(sup
i∈N
|Ȳi(q)− Z̄i(q)| > ρ) ≤ C P(B)

ρ log ∆′

for some constant C > 0.

Using Lemma B.4 it suffices to show that P(B)/ log ∆′ → 0 as ε ↓ 0. The following lemma shows
a stronger result.

Lemma B.5. Suppose that B is defined as in Lemma B.4, then

lim
ε↓0

P(B) = 1.

Proof. Let

B1 :=

{
ε̄4/5 ≤ 1

2
ε1/2

}
B2 :=

{
2ε1/2 ≤ ε̄1/5

N0 ∨ 1

}

Now as (1/2)ε−1/2 ≤ ∆′ ≤ 2ε−1/2 we have that B ⊃ B1∩B2. First let us bound P(Bc1). Note that on
the event Bc1 we have that ε̄ > 2−5/4ε5/8. Note that a size biased sample from a Poisson–Dirichlet
random variable has a uniform law on [0, 1]. Hence it follows that

E

[ ∞∑
i=1

Z̄i(0)1{Z̄i(0)<ε}

]
= ε

and thus

P

( ∞∑
i=1

Z̄i(0)1{Z̄i(0)<ε} > ε5/6

)
≤

E
[∑∞

i=1 Z̄i(0)1{Z̄i(0)<ε}

]
ε5/6

≤ ε1/6.

Next consider the random variable M in Lemma B.2 at time s0 = s − ∆ where we recall that
Ȳ (0) = X(X̃s0). We have that

∞∑
i=1

Yi(0)1{Ȳi(0):Ȳi(0)<ε} ≤ ε(M + 1)

Then applying Lemma B.2 at time s0 we have that

P

( ∞∑
i=1

Ȳi(0)1{Ȳi(0)<ε} > ε5/6

)
≤ P(M > ε−1/5) ≤ Cε1/6

for some constant C > 0. Hence it follows that for ε > 0 small

P(Bc1) = P(ε̄ > 2−5/4ε5/8) ≤ P(ε̄ > ε5/6) ≤ ε1/6 + Cε1/6.

which shows that P(B1)→ 1 as ε ↓ 0.
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Now we bound P(Bc2). Firstly we use the bound ε̄ ≥ ε and so we are left to bound N0 from
above. Using the stick breaking construction of Poisson–Dirichlet random variables (see for example
[3, Definition 1.4]) one can show that

P
(

# {i ∈ N : Zi(0) > ε} > ε−1/4
)
≤ C ′ε

for some constant C ′ > 0. On the other hand we have that

# {i ∈ N : Yi(0) > ε} ≤M

and hence using Lemma B.2 we obtain

P
(

# {i ∈ N : Yi(0) > ε} > ε−1/4
)
≤ C ′′ε1/5

for some constant C ′′ > 0. Hence it follows that P(Bc2) ≤ C ′ε+C ′′ε1/5 and the result now follows.

Theorem B.1 now follows from Lemma B.3, Lemma B.4 and Lemma B.5.
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