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Introduction

Probability theory has found many applications within analysis starting in the early 20th

century. The study of potential analysis using probability has resulted in more under-
standing and further development in that area ([Doo84], [Pin95]). Schramm-Loewner
evolutions hallmarks a wonderful link between complex analysis and probability. There
have also been probabilistic proofs of classic analytic results such as Liouville’s theorem,
Picard’s little theorem ([Dav75]) and Atiyah-Singer index theorem ([Bis84]).

The natural question is then to ask if one can extend the use of probability to relativistic
settings and deduce properties of the spaces that relativity is based on. The link between
probability and analysis in the Euclidian setting stems from the one-to-one correspondence
of bounded harmonic functions and random variables in the invariant �-algebra,1 which
also holds in relativistic settings. Essentially, this is due to Brownian motion representing a
particle of gas in an equilibrium system and harmonic functions represent the equilibrium
state of the system. In relativistic settings, however, the classical means of specifying
processes as having independent increments with a certain distribution fails as the notion
of an increment no longer makes sense on manifolds. One is led to describing a diffusion
through its properties analogous to Rd, such as its generator and the invariance under the
action of isometry groups.

The discourse into relativistic diffusions yields some strange results. For example, one
can find a non-constant bounded harmonic function which is connected to the angular
part of the diffusion converging. This lead to the study of the so called Poisson boundary,
the set of non-constant bounded harmonic functions ([Bai08b], [BR08]). Indeed this has
a strong connection to the asymptotic behaviour of relativistic diffusions via the link of
the invariant algebra.

The paper investigates Markov processes in relativistic settings. The first account of
this (as far as I am aware) is in [Dud65] where Dudley constructs and investigates the be-
haviour of Markov processes in Minkowski spacetime. The approach here will be different
to that of Dudley, which was pointed out by my supervisor Bailleul. The construction of
diffusions on a general Lorentz manifold is also shown, as this is a wonderful generalisation
of the Minkowski case.

The first chapter gives a very brief account of geometry and probability tools that the
reader may not be familiar with. I shall assume that the reader has a background to that

1See Chapter 4 for a definition.
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comparable with the Part III courses advanced probability and stochastic calculus. The
geometry knowledge required is minimum, and I have tried to give more or less intuitive
explanations as opposed to heavy geometric arguments. Unfortunately the material in the
first chapter alone could fill out a whole book, hence the reader is advised to acquaint
themselves using a book on the subject where necessary. Chapter 2 will give an account
of Lévy processes in Lie groups. These will be obtained as a solution to and SDE given
in [AK93], and will also give a proof of the result in [Hun56] about the generators of Lévy
processes in Lie groups. This will aid us in defining Markovian processes on relativistic
settings as, for example, diffusions in Minkowski case can be thought as projection of
diffusions from SO+(1; d)=SO(d). The main reference for this chapter is [Lia04], who in
turn uses [AK93] and [Ram74] as his sources.

The remainder of the paper will be focused on relativistic diffusions, where in chapter
3 we give the construction of these on a Lorentz manifold and also some asymptotic
properties of diffusions in Minkowski spacetime, namely that the diffusion asymptotically
approaches a hyperplane at a random height. Recently [FLJ07] have also proved some
properties of diffusions on a Schwarzschild spacetime, where the diffusion either hits the
singularity in a finite time or tends off to infinity as t!1 both with positive probability.
The last chapter will give a informal account to the study of the Poisson boundary in the
Minkowski setting.
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Chapter 1

Preliminaries
C (V ) the set of continuous functions from V to R
Cb(V ) the set of bounded continuous functions from V to R
Cc(V ) the set of continuous functions with compact support

C k(V ) the set of k continuously differentiable functions from V to R
C1(V ) the set of smooth functions from V to R
TpM tangent space at p 2M
� dX Stratonovich integral with respect to X
L� The left multiplication operator, i.e. L� (�) = ��

R� Strictly positive real numbers

TM :=
a
p2M

TpM

1.1 Probability
A process X on (
;F ;P) is said to be Markovian or a Markov process with respect to
a filtration fFtgt>0 if the process is adapted to the filtration and for each s; t > 0 and
A 2 F ,

P(Xt+s 2 AjFs) = P(Xt+sj�(Xs)):

Recall that a process X is a strong Markov process with respect to fFtgt>0 if for each
stopping time � with P(� < 1) > 0, we have that conditioned on f� < 1g, the process
X�+� �X� is independent of F� and has the same law as X�. Here is a useful result from
the study of Markov processes.

Proposition 1.1.1. Any Markov process X that is càdlàg is a strong Markov process.
1

Proof. Suppose that � takes countably many values, then it is of the form
P
tn1�=tn . By

conditioning on events such as f� = kg and using the simple Markov property, we can
deduce that X�+� has the desired properties.

Now suppose that � is any stopping time such that P(� <1) > 0. We have that the
result holds for each �n = 2�nb2n�+1c where bxc is x rounded down to the closest integer.
As �n # � , by using the right continuity we obtain the desired result.

Suppose we have a collection of measures f�tgt>0 on a group G. We say that these
satisfy the semi-group property if �t ? �s = �t+s where

� ? �(f) =
Z
f(�� )�(d�)�(d� ):

1c.f. [Ber96]



1.1 Probability Preliminaries 2

A semi-group of measures if weakly continuous if limt#0 �t = �0 in the weak sense. A
weakly continuous semi-group of measures give rise to a strongly continuous semi-group
of operators on Cb(G), that is a set of operators given by Ptf(�) = �t(f � L�) for each
f 2 Cb(G), which have the property that PtPs = Pt+s and limt#0 Ptf = f in the strong
sense.2

Conversely each strongly continuous semi-group of operators have a unique weakly
continuous semi-group of measures associated with them and if we assert that jjPtjj = 1
for each t > 0 then �t(G) = Pt(1) = 1, i.e. �t is a probability measure for each t > 0.

A generator of a semi-group of operators (or measures) is defined by;

L f(� ) = lim
t#0

1

t
[Ptf(� )� f(� )]:

Essentially, the generator tells us about the infinitesimal action of the operator. We can
also look at the generators of Markov processes. The processes that generate a strongly
continuous semi-group on Cb(G) via Ptf(� ) = E� [f(Xt)] are called Feller processes. It is
important to note that every Lévy process is a Feller process.3

Next is an important theorem which we will be needing.

Theorem 1.1.2 (Hille-Yoshida). If L is the generator of a weakly continuous semi-
group of measures f�tgt>0 on a group G, then L is closed and the domain of the
generator is dense in Cb(G). Moreover two semi-groups of weakly continuous mea-
sures coincide if and only if their generators are the same.

Also we give one proposition which follows directly from the uniqueness of generators.

Proposition 1.1.3. If two strongly continuous semi-group of operators fPtgt>0 and
fQtgt>0 associated with the processes X = (Xt : t > 0) and Y = (Yt : t > 0) are such
that

lim
t#0

1

t
[Ptf(x)� f(x)] = lim

t#0

1

t
[Qtf(x)� f(x)] 8x 2 E; f 2 D

then X and Y are modifications.

The interested reader is referred to [Sat99] for a proof of both of these.
Stratonovich integrals are constructed in the same manner as the Itô integrals but

instead for simple previsible processes H, we have

Z t

0
Hs � dXs = lim

n!1

n�1X
i=1

(Hti+1 +Hti)(Xti+1 +Xti)

2

2The strong sense refers to the fact that Cb(G) is a Banach space with the supremum norm and so the
last statement reads that jjPtf � f jj1 ! 0. This contrasts with the weak sense of convergence, which is
that �n(f) converges to �(f) for each f 2 Cb(G).

3The Chapman-Kolmogorov equations give the semi-group property and the right continuity of the paths
with the uniform continuity of f gives the strong convergence using dominated convergence theorem, c.f.
[Sat99].
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and thus we can convert Stratonovich integral to an Itô integral using the following 4

Z t

0
Xs� � dYs =

Z t

0
Xs�dYs +

1

2
[X;Y ]ct

where X;Y are semi-martingales and [X;Y ]c is the continuous part of the quadratic varia-
tion [X;Y ]. Stratonovich equations are useful on manifolds as they provide a way of doing
stochastic calculus without a dependency on the co-ordinates.5

1.2 Geometry
A d-manifold M is a topological space that is locally homeomorphic to Rd. That is, for
each point p 2 M , there is a neighbourhood U of p and a map � : U ! Rd such that
�(U) is open and � is a homeomorphism to its image. Note that we can induce local
co-ordinates on a manifold by looking at ��1(ei) where e1; � � � ; ed is the basis in Rd. The
system of the open sets along with the maps f(U; �)�g�2I , such that fU�g�2I is a covering
for M , is called an atlas. When we refer to a manifold we always assume that the atlas is
given. The manifold is called smooth if there exists an atlas for which each pair of maps �
and �0 we have that the whenever the map �0 � ��1 : �(U \ U 0)! Rd is well defined, it is
smooth. We will always assume that our manifolds are connected, smooth and Hausdorff.

A manifold is Riemannian if it is equipped with a Riemannian metric g, which obeys
the following;

(i) gp acts as an inner product on TpM � TpM

(ii) For smooth vector fields X;Y , the map p 7! gp(X(p); Y (p)) is smooth.

If the inner product is not positive definite then the metric is called pseudo-Riemannian
and similarly, the space is called a pseudo-Riemannian manifold.

A connection on a manifold is used to connect the tangent spaces together. This is
denoted by r, and satisfies the following;

(i) r : C1(M;TM)� C1(M;TM)! C1(M;TM), (X;Y ) 7! rXY is bilinear

(ii) For each f 2 C1(M;R) we have that rfXY = frXY and rXfY = df(X)Y +
rfXY .

The torsion of a connection is given by rXY + rYX � [X;Y ]. On pseudo-Riemannian
manifolds there exists a natural connection called the Levi-Civita connection, which is
torsion free and preserves the inner product along parallel transports.

4Notice that the definition of the Stratonovich sum is nothing but the Itô sum with Hti replaced with
(Hti+1 +Hti)=2. [App04] serves as a good reference to all the statements made here.

5Note that the Itô integral may change (due to the quadratic variation terms) as the co-ordinate system
of the space changes. This causes Itô integrals to be not well defined on manifolds.



1.2 Geometry Preliminaries 4

An orthonormal frame is a pair (p; sp) such that sp = (s1p; :::; s
d
p) is an orthonormal

basis for TpM with respect to gp. The action of O(n), the Euclidian rotations, is free and
transitive on the orthonormal frame bundle.

A Lie group G is a group equipped with the smallest smooth manifold structure such
that the maps (�; � ) 7! � � � and � 7! ��1 are smooth. We will again be assuming that
these are Hausdorff and connected. Each Lie group G gives rise to a Lie algebra g by
taking the left invariant vector fields on it, and equipping it with the so called Lie bracket
[X;Y ]. The Lie algebra can also be identified with TeG.

The group O(1; d) is composed of (d+ 1)� (d+ 1) matrices A with

AT

0
BB@
1 0 � � �
0 �1
... . . .

1
CCAA =

0
BB@
1 0 � � �
0 �1
... . . .

1
CCA :

These can be though of rotations in the Lorentz manifold. The subgroup SO(1; d)
is then given by fA 2 O(1; d) : det(A) = 1g and has four connected components. The
connected component with the identity is denoted by SO+(1; d).



Chapter 2

Lévy Processes in Lie Groups
Throughout this chapter we will take G to be a locally compact, Hausdorff Lie group with
Lie algebra g. We shall assume that (
;F ;P) is the probability space we are working in
and that any filtration mentioned satisfies the “usual assumptions” of right continuity and
completeness.1

We shall see how one can construct Lévy processes in groups. This will follow a mixture
of [Lia04] and [AK93]. Lévy process are defined on a group using the increments specified
by the group operator.

Definition 2.0.1. A left Lévy process (hereafter referred to as Lévy process) is a stochas-
tic process g = (gt : t > 0) taking values in G such that;

(i) g0 = e a.s

(ii) The increments g�1t1 gt2; : : : ; g
�1
tn�1gtn are stationary and independent for each 0 6

t1 < t2 < � � � < tn.

(iii) The paths t 7! gt are càdlàg

The condition (iii) may be replaced with the weaker condition that the paths are
continuous in probability (stochastically continuous),2 in which case a càdlàg modification
exists. Notice that by taking G = (R;+) we obtain the definition of a Lévy process on R,
so this definition seems reasonable.

The first section deals with Poisson processes in G which we will need when we deal
with the SDE given in the next section. The second section shows that a Lévy process
can be given as a solution to an SDE. The last section proves the converse, that every
Lévy process solves this SDE.

2.1 Poisson Processes
Suppose that f�n : n 2 Ng is a set of i.i.d. G-valued random variables with law F and
that K = (Kt : t > 0) is a Poisson process with parameter � > 0. We define a compound
Poisson process Y via

Yt = �1 � �2 : : : �Kt

with the convention that the empty product (e.g. Y0) is given the value e. It is easily
deducible that Y is a Lévy process and moreover;

P(Yt 2 da) =
X
n>0

e��t
(�t)n

n!
F �n(da)

1Though in the case of Lévy processes, the natural filtration is right continuous, c.f. [Ber96]
2see [App04] for instance
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where F �n is the n-fold convolution. We define a Poisson random measure on G by the
following construction;

N((0; t]; A) = #fs 2 [0; t) : �Ys 2 Ag
where �Ys = Ys�Ys�, which extends by Kolmogorov’s extension theorem to a measure on
R�G. Via brute force computation, it can be shown that the number of jumps a G-valued
Poisson process makes by time t is Poisson with parameter t� and so the measure N is
indeed a Poisson random measure with intensity Leb
 � where � = �F .

Lemma 2.1.1. The domain of the infinitesimal generator for Y contains Cb(G) and
moreover;

L f (a) =
Z
Gnfeg

[f(ab)� f(a)]�(da) (2.1.1)

for each f 2 Cb(G).

Proof. Notice that for any f 2 Cb(G) we have that

f(�Yt) = f(�) +
X

06s6t

(f(�Ys)� f(�Ys�)): (2.1.2)

Now by noting the definition of the Poisson measure N we see that the jumps of the
process correspond to;

X
06s6t

(f(�Ys)� f(�Ys�)) =
Z t

0

Z
Gnfeg

[f(�Ys� )� f(�Ys)]N(ds; d� ):

This is a martingale so has finite expectation, so by plugging it back into (2.1.2) and using
Fubini’s theorem we arrive at;

E[f(�Yt)]� f(�) =
Z t

0

Z
Gnfeg

(E[f(�Ys� )]� E[f(�Ys)]) �(d� )ds:

The result follows by differentiation.

We shall be using the following proposition later which is an adaptation to that in
[RY99].

Proposition 2.1.2. Real valued Poisson processes N1
t ; :::; N

n
t are independent if and

only if they do not jump at the same time.

Proof. To avoid heavy notation, we will prove this for n = 2 which easily extends to
generality.

First let N;N 0 be two independent real-valued Poisson processes and Tn be the jump
times of N . We have then thatX

t>0

(�Nt)(�N
0
t) =

X
n2N

�N 0
Tn :
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However N 0 is independent from the stopping times (Tn : n 2 N) and also that for each
fixed time t, �Nt = 0. Hence we have that �NTn = 0 for each n 2 N.

For the converse take Poisson processes N;N 0 that do not jump together and two step
functions h; h0. Consider the two exponential martingales given by

Mt = exp
�
�
Z t

0
h(s)dNs + c

Z t

0
(1� e�h(s))ds

�

Mt = exp
�
�
Z t

0
h0(s)dN 0

s + c0
Z t

0
(1� e�h

0(s))ds
�

where c; c0 are constants.
Notice that M and M 0 never jump simultaneously either and are both are bounded

with bounded variation. Using Ito’s formula and the fact that [N;N 0] =
P
(�N)(�N 0) = 0

we obtain that MM 0 = (MtM
0
t : t > 0) is a martingale with E[MtM

0
t] = 1. Thus

E
�
exp

�
�
Z t

0
h(s)dNs �

Z t

0
h0(s)dN 0

s

��
= exp

�
c
Z t

0
(1� e�h(s))ds

�
exp

�
c0
Z t

0
(1� e�h

0(s))ds
�

= E
�
exp

�
�
Z t

0
h(s)dNs

��
E
�
exp

�
�
Z t

0
h0(s)dN 0

s

��

which shows the independence.

2.2 Stochastic Differential Equations
We will construct Lévy processes as a solution to some SDE. Indeed this is analogous to
the case in Rd, see for example [App04]. Firstly to define a “derivative” of some sort we
must look to the Lie algebra. So we let X1; : : : ; Xd be a fixed basis of the Lie algebra for
now. The basis induces local co-ordinates associated with them on the group, in the sense
that Xixj = �ij via the following construction.

Set F = ff 2 C 2 : f(e) = Xif(e) = 0 for i = 1; : : : ; dg which is closed, non-empty and
has finite co-dimension with respect to C 2. Now we can explicitly construct a function
y 2 C 2 such that y(e) = 0 and Xiy(e) = 1. Then we have that as F + y is closed,
(F + y) \ D is dense in C 2. Thus we have x1; : : : ; xd 2 D \ C 2 such that xi(e) = 0 and
Xjxi(e) = �ij for each i; j = 1; : : : ; d.

The objective of this section is to obtain Lévy processes as a solution to the following
SDE;

f(xt) =f(x0) +
dX
i=1

Z t

0
Xif(xs�) � dBi

s +
dX
i=1

ci

Z t

0
Xif(xs�) ds

+
Z t

0

Z
Gnfeg

[f(xs��)� f(xs�)]N(ds; d�) (2.2.1)

+
Z t

0

Z
Gnfeg

"
f(xs��)� f(xs�)�

dX
i=1

xi(�)Xif(xs�)

#
N(ds; d�)
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where f 2 C 2.
For the remainder of the section we will assume that that U is a relatively compact

neighbourhood of e and denote by Ft the natural filtration with respect to B and N .
This next lemma allows one to connect the case on the group to that in Rd. We leave the
details of the Euclidian case out.

Lemma 2.2.1. If supp(�) � U then SDE given by (2.2.1) has a unique local solution
on U .

Proof. Without a loss of generality we can assume that there exists a chart (U; ) that
maps the identity to the origin. Define vt =  (xt), N 0(dt; A) = N(dt;  (A)), X 0

i(�) =
D [Xi 

�1(�)], X 0(�) = D [
Pd
i=1 ciXi 

�1(�)] and v(x; y) =  ( �1(x) �1(y)).3 The actions
of these maps are smooth on Rd, so

X 0
i =

dX
j=1

kij
@

@xj
X 0 =

dX
j=1

bj
@

@xj

where k; b 2 C1
c (Rd) and xi are the local coordinates. Suppose we write out f = (f1; :::; fd)

and let ki = (ki1; :::; kid) and b = (b1; :::; bd), then (2.2.1) becomes;

yt =
dX
i=1

Z t

0
ki(ys�) � dBi

s +
Z t

0
b(ys)ds

+
Z t

0

Z
 (U)nf0g

[v(ys�; x)� ys�]N
0
(ds; dx) (2.2.2)

+
Z t

0

Z
 (U)nf0g

[v(ys�; x)� ys� �
dX
i=1

xiki(ys�)]N
0(ds; dx):

This is a well known SDE that has a unique solution that is adapted to the filtration
of B and N 0. See [App04][chap. 6] for details. As  is bijective, the uniqueness carries
forward to G.

It follows from Kolmogorov’s theorem that we can specify any process with the topology
of the space and so the solution to (2.2.2) when mapped back to G will be adapted to Ft

as  is homeomorphic.
The following lemma will allow us to patch up the solutions to obtain a global solution.

Lemma 2.2.2. Suppose that gt is a solution of (2.2.1) for some B and N and let
N 0 = Leb 
 �0, where �0(G) < 1 and it is independent of B and N . Let Jn be the
n-th jump time and an the corresponding jump size of N .

3D is the derivative operator.
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Define y inductively by

yt = gt if 0 6 t < J1

yt = y(Jn�)ang(Jn)�1gt if Jn 6 t < Jn+1:

Then yt is a solution to (2.2.1) with N and ci replaced by N +N 0 and ci+
R
xid�

0.

Proof. First, note that y0 = 0 and that t 7! yt is càdlàg for Jn 6 t < Jn+1. By the
right-continuity of gt we have that y(Jn+) = y(Jn�)ang(Jn)�1g(Jn) = y(Jn�)an = y(Jn)
and also a similar calculation shows that the left limits are finite, thus t 7! yt is càdlàg.
As N is a Poisson measure, the jump times and sizes are independent and stationary, and
noting that gt also has independent stationary increments leads to the conclusion that
y = (yt : t > 0) is a Lévy process.

Suppose we write

I(f; g; a; b) =
dX
i=1

Z b

a
Xif(gs�) � dBi

s +
dX
i=1

ci

Z b

a
Xif(gs�) ds

+
Z b

a

Z
Gnfeg

[f(gs��)� f(gs�)]N(ds; d�)

+
Z b

a

Z
Gnfeg

"
f(gs��)� f(gs�)�

dX
i=1

xi(�)Xif(gs�)

#
N(ds; d�):

for a < b and f 2 C 2.
Now as the jumps of g are determined by N and this is independent from N 0. Thus g is

left continuous at t = J1 and hence continuous there and so we have that for J1 6 t < J2,

f(yt) = f(g(J1)) + [f(g(J1)a1g(J1)
�1gt)� f(g(J1)an)] + [f(g(J1)a1)� f(g(J1))]: (2.2.3)

Note that by definition we have

f(g(J1)a1)� f(g(J1)) =
Z t

0

Z
Gnfeg

[f(ys��)� f(ys�)]N
0(ds; d�):

Also

f(g(J1)a1g(J1)
�1gt)� f(g(J1)an) = (f � Lg(J1)a1g(J1)�1)(gt)� (f � Lg(J1)a1g(J1)�1)(gJ1)

= I(f � Lg(J1)a1g(J1)�1; g; J1; t) = I(f; y; J1; t)

where the last equality follows from the definition of I.
By the strong Markov property, the processes BJ1 := B � BJ1 and NJ1([0; t]; �) :=

N([J1; J1 + t]; �) are distributed as B, N respectively and moreover they are independent
of FJ1. Hence by using this and plugging in the above two calculations to (2.2.3) we have
for J1 6 t < J2;

f(yt) = f(g(J1)) + I(f; y; J1; t) +
Z t

0

Z
Gnfeg

[f(ys��)� f(ys�)]N
0(ds; d�):
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But then as f(g(J1)) = f(g0) + I(f; g; 0; J1) = f(y0) + I(f; y; 0; J1), we have that

f(yt) = f(y0) + I(f; y; 0; t) +
Z t

0

Z
Gnfeg

[f(ys��)� f(ys�)]N
0(ds; d�)

which shows the result for J1 6 t < J2. The general result is obtained by carrying on
inductively.

The theorem now follows immediately.

Theorem 2.2.3. The SDE (2.2.1) has a unique solution which is a Lévy process on
G started from g0.

Proof. From above we know that a solution exists in a relatively compact neighbourhood
U around the identity. Then by letting N = N jU and N 0 = N jUc , the second lemma gives
the existence of a global solution.

2.3 Generators
The remainder of this chapter will go towards proving the following theorem.

Theorem 2.3.1. For every Lévy process, there exists a modification that solves (2.2.1).

With the proof of the theorem, we will also prove the expression of the generators of
Lévy processes in Lie groups which was first proved by [Hun56].

First let us denote the generator;

L f(x) := lim
t#0

[Ptf(x)� f(x)]

where Ptf(x) = Ex[f(gt)].
Now define D to be the domain of L . Then we have the following lemma.

Lemma 2.3.2. D \ C 2 is dense in C 2.

Proof. Suppose that f 2 C 2 and X;Y 2 g, then notice that XY Ptf = PtXY f and so
Ptf 2 C 2 for each t > 0. As a direct consequence we see that jjPtf jj2 6 jjf jj2 and so by
an application of the Hille-Yoshida theorem the result follows.

There is a generalisation from the preceding lemma that we shall make, that is to
assume that the generator is well defined for all f 2 C 2(G). The reader is directed to
[Lia04] for a verification.

In order to prove that a Lévy process solves the SDE, we need aij to specify a Brownian
motion, ci to specify the drift and a Poisson measure N . This is easy if we consider the
Lévy-Itô decomposition, which states that a Lévy process is a Brownian motion with drift
plus a pure jump process. We do not, however, have access to this theorem yet, but it
shall do no harm to bear that in mind in what follows.
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To that end, define

N((0; t]; B) = #fs 2 (0; t] : g�1s�gs 2 Bnfegg

which count the number of jumps that land in B.

Lemma 2.3.3. The measure N is a Poisson random measure, and moreover the
intensity of the jumps are given by � satisfying the following;

(i) �(e) = 0

(ii) �(1K
Pd
i=1 x

2
i ) <1 for any compact K

(iii) �(U c) <1 for any neighborhood U of e.

(iv) �(�) = L �(e) for any � 2 Cc(G) with �(e) = 0.

Proof. Without loss of generality we may assume that g0 = e almost surely. First, for
any B 2 F fixed, t 7! NB

t := N((0; t]; B) is càdlàg as t 7! gt is and also that the
increments are independent and identical. The process increments by 1, and so each point
is a holding point. As the increments are identical and independent, the holding points
must be memoryless and thus (NB

t : t > 0) is a Poisson process for each B 2 F .
It is clear that for disjoint sets B1; :::; Bn, NB1

t ; :::; NBn
t cannot jump together (as that

would imply that g jumps into disjoint sets at the same time, which is absurd). Thus by
Proposition 2.1.2 NB1

t ; :::; NBn
t are independent, and so N is a Poisson measure. Let � be

its intensity. We will now show the properties of � as claimed.
Notice that (i) is immediate and that (ii) and (iii) follow easily from (iv), so we shall

only prove (iv). It suffices to show that (iv) holds for any � 2 C1
c (G) that vanishes on a

neighbourhood U of e and 0 6 � 6 1. Recall that the intensity measure can be computed
by �(�) = E

R 1
0

R
G �(�)N(dt; d�).

Notice that �(g�1s gt) =
R t
s

R
G �(�)N(du; d�) and so we have that

fn :=
nX
k=1

�(g�1(k�1)=n)gk=n)!
Z 1

0

Z
G
�(�)N(dt; d�) a.s.

Thus by stationary and independent increments;

E[f2n] =
nX

j;k=1

[�(g�1(k�1)=n)gk=n)�(g
�1
(j�1)=n)gj=n)]

=
X
j 6=k

E[�(g�1(k�1)=n)gk=n)]E[�(g
�1
(j�1)=n)gj=n)] +

nX
l=1

E[�(g�1(l�1)=n)gl=n)
2]

=
X
j 6=k

E[�(g1=n))]2 +
nX
l=1

E[�(g1=n)2] = (n� 1)nE[�(g1=n))]2 + nE[�(g1=n))2]:
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Noting that �(e) = 0 gives that (n � 1)nE[�(g1=n)] = (n � 1)nP1=n�(e) ! L �(e) a.s. as
n!1, and similarly for the second term. So

E[f2n]! (L �(e))2 + L �2(e) <1

and so the family ffn : n > 1g is bounded in L2, and hence, uniformly integrable. This
implies that fn !

R 1
0

R
G �(�)N(dt; d�) in L1 and so we have just proved the following;

�(�) = lim
n!1

E[fn] = L �(e):

Remark 2.3.4. The measure � above is called the Lévy measure of g. It can also be
obtained by the fact that f 7! L f(e) is a linear map which is bounded, and so the
Riesz representation theorem, there exists a unique Borel measure � on the one point
compactification Gc of G such that �(f1g) = �(feg) = 0 and � = �jG gives us the
measure we have described above, c.f. [Lia04].

Lemma 2.3.5. Let fxigdi=1 be the co-ordinates as before and g = (gt : t > 0) be a Lévy
process, then

sup
t>0

1

t
E
"
dX
i=1

xi(gt)
2

#
<1:

Proof. By 2.3.3 we have that limt#0(1=t)P(gt 2 U c) < 1 for every neighbourhood U
around the identity and for each t > 0, (1=t)P(gt 2 U c) <1. Then

sup
t>0

1

t

Z
1Uc(�)P(gt 2 d�) <1:

Similarly taking U compact gives that supt>0
1
t
E[1U

P
xi(gt)

2] <1 and the result follows.

Let aij = L (xixj)(e)��(xixj), ci = L (xi)(e) where � is as defined in Lemma 2.3.3.
Clearly the matrix (aij)16i;j6d is symmetric and also for any k 2 Rd we have

L

0
@ dX
i;j=1

kixikjxj

1
A (e) 6 L �n

 
dX
i=1

kixi

!2

(e)

where �n 2 C1
c with 0 6 �n 6 1 and f� : �n(�) 6= 0g " G. By tending to the limit, the

right hand side tends to �(xixj), which gives that (aij) is positive definite.
Thus we can construct a Brownian motion B with using (aij)16i;j6d as the covariance

matrix.
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Proof of Theorem 2.3.1. Using the notation above we will first prove that the generator
of gt is uniquely determined by aij, ci and �. It suffices to consider the generator evaluated
at e, as we can substitute f = f �L� to get its value at � . First consider the Taylor series
of f(� exp(s

P
xiXi)) which gives;

f(�� )� f(�) =
dX
i=1

xi(� )Xif(�) +
1

2

dX
i;j=1

xi(� )xj(� )XiXjf(��
0)

where �0 = exp(s
P
xi(�)Xi) for some s 2 [0; 1]. By plugging in � = gt and recalling that

xi(e) = 0, we have

E[f(�gt)� f(�)] =
dX
i=1

E[xi(gt)� xi(e)]Xif(�) +
1

2

dX
i;j=1

E[xi(gt)xj(gt)XiXjf(�g
0
t)]:

We needn’t worry about the term
Pd
i=1 E[xi(gt)�xi(e)]Xif(�) as it is clear that by dividing

by t and tending to the limit, we see that this is determined by fcigdi=1.
For the last term we can separate the sum as

dX
i;j=1

xi(gt)xj(gt)XiXjf(�g
0
t) =

dX
i;j=1

xi(gt)xj(gt)XiXjf(e)+
dX

i;j=1

xi(gt)xj(gt)XiXj(f(g
0
t)�f(e)):

By taking expectations and limits gives

L

2
4 dX
i;j=1

xixjXiXjf(� )

3
5 (e) = dX

i;j=1

aijXiXjf(e) +
X
i;j=1

�(xixj)XiXjf(e)

+ L

2
4 dX
i;j=1

xixjXiXj(f � f(e))

3
5 (e):

where f(� ) = f(� 0).
Notice that A(�) := xi(�)xj(�)XiXj(f(�)�f(e)) 2 C (G) and A(e) = xi(e)xj(e)XiXj(f(e)�

f(e)) = 0. As the local co-ordinate functions xi determine a co-ordinate system around
e, there exists a relatively compact neighbourhood W around the identity such that with
�n as above, we have that

L (A� �nA)(e) 6 sup
t>0

1

t
E[(1� �(gt))jA(gt)j] � sup

t>0

1

t
E
"
(1� �n(gt))

dX
i=1

xi(gt)
2

#
:

Now as f�n < 1g # feg and xi(e) = A(e) = 0, from Lemma 2.3.5 it follows that L (A �
�nA)! 0 as n!1.

Hence we can conclude that the generator of gt is uniquely determined (up to modifi-
cation) by (aij), ci and �.
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From Theorem 2.2.3 we can deduce that there exists a solution to (2.2.1) with B
(having (aij) as its covariance matrix), ci and N (Poisson measure with intensity �) given
above. Noting that the compensated Poisson process N has constant expectation and
that in local co-ordinates the Brownian has generator

P
ij aijXiXjf gives the following

expression of the generator for the solution to the SDE;

L f(� ) =
dX
i=1

ciXif(� ) +
dX

i;j=1

aijXiXjf(� )

+
Z
Gnfeg

(f(��)� f(� )�
dX
i=1

Xif(� )xi(�))�(d�):

So then the generator of the solution is completely determined by aij, ci and �. The result
now follows from the uniqueness of generators, Prop. 1.1.3.

The preceding theorem and Theorem 2.2.3 give the following result which was first
established in [Hun56].

Corollary 2.3.6 (Hunt). A right continuous process g = (gt : t > 0) is a Lévy process
if and only if it has a generator of the form

L f(� ) =
dX
i=1

ciXif(� ) +
dX

i;j=1

aijXiXjf(� )

+
Z
Gnfeg

(f(��)� f(� )�
dX
i=1

Xif(� )xi(�))�(d�):

where (aij) is symmetric and positive definite and � is a Lévy measure.

Remark 2.3.7. So far the dependence of the co-ordinates have been left out. Notice that
if fx0ig are new co-ordinate for the same basis X1; : : : ; Xd then x0i = xi + o(x2), moreover
if a0ij = L (x0ix

0
j)(e)� �(x0ix

0
j) then

L (x0ix
0
j)(e) = a0ij +�(x0ix

0
j) = aij�(x

0
ix

0
j)

and so aij = a0ij.
Indeed it turns out that the diffusion component

Pd
i;j=1 aijXiXj is also invariant under

basis changes (c.f. [Lia04][Prop. 1.3]).

Remark 2.3.8. We will from now on be assuming that every Lévy process solves the SDE.
This is not really a hindrance as we will be considering the so called Lévy triplets (a; b;�)
which determine the Lévy process. To the reader that is uncomfortable with this notion,
formally we can create equivalence classes of Lévy processes with respect to modifications
and choose the representatives that solve the SDE.



Chapter 3

Stochastic Processes in Spacetime
The study of Markov process in spacetime invariant under isometries can be found in
[Dud65]. His original construction is different to that given in this chapter. The first
section describes two methods of construction of diffusions in Minkowski spacetime. The
second method will be extended to the general case of curved spacetime, using more tools
from geometry. The last two sections describe the asymptotic behaviour of diffusions in
the Minkowski spacetime. The sections 1,3,4 use [BR08], [Bai08b] and [Bai08a] as their
main reference. The second section derives from [FLJ07] and [Hsu02].

In favour of less notation we leave out the possible explosion of the processes described
in this chapter, though it is worth to note that in the Minkowski setting diffusions do have
infinite lifetime.

3.1 Minkowski Spacetime
In the theory of relativity, one includes time as a part of space on the same manifold.
The Minkowski spacetime is a flat manifold, denoted by R1;d which is indeed as a set
the same as R1+d, however, the first component denotes the “time” of the object and the
pseudo-Riemannian metric is given by q(x) = x20 �

Pd
i=1 x

2
i for x 2 R1;d. The theory of

relativity asserts that only massless objects may travel at the speed of light and nothing
can travel faster than the speed of light. We shall model diffusions of objects that have
mass and thus must travel strictly less than the speed of light. We adhere to common
convention in relativity that the speed of light c = 1.

Generally on manifolds there is no notion of an increment and hence defining stochas-
tic processes cannot be done by classical means. There is, however, a generalised notion
of a Laplacian on any pseudo-Riemannian manifold called the Laplace-Beltrami operator,
which is given by �Mf := div grad f . As in the Euclidian case, the diffusions are associ-
ated with generators of the form (�2=2)�M . Feller process in Euclidian settings naturally
give rise to Lévy process as any càdlàg Feller process invariant under the isometries is a
Lévy process (c.f. [Sat99]). Thus it would seem natural then to try and find càdlàg Feller
processes on R1;d.

The direct isometry group of R1;d is SO(1; d) which has four connected components.
SO+(1; d) denotes the identity component in SO(1; d) and consists of isometries that don’t
change the direction of time nor change the orientation of space.

There is a problem that is encountered in relativistic settings when we ask for the
process to have speed less than that of light. For example, an object such as Brownian
motion is nowhere differentiable and the small time boosts behave quite frantically, and
so it would be unrealistic to expect that it indeed conforms to the principles of relativity.
In [Dud65] Dudley proves that it is impossible to have a non-trivial càdàg Feller process
invariant under SO+(1; d). It is essentially due to the fact that in order to assert conditions
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on the velocity of a process at time t, one has to assert conditions on Ft� which means
that the process is no longer Markovian unless its filtration is left continuous. The solution
to this problem is to consider a càdlàg process _�s on fx 2 TR1;d; q(x) < 1; x0 > 0g and
then let �t = �0 +

R t
0
_�s�ds to obtain a process on R1;d.

In relativity theory, each frame is relative to the object that is in spacetime. Each
object carries its own “time clock” which leads to counter-intuitive results such as the
famed twin paradox. It is often helpful to parametrise the process by the right inverse
of t 7! R t

0

q
( _�s)ds which gives a process on the hyperbolic space H := fx 2 R1;d : q(x) =

1; x0 > 0g. The correspondence here is one-to-one so henceforth we shall be assuming that
(�s; _�s) 2 R1;d �H with �t = �0 +

R t
0
_�s�ds.

If we fix the point (1; 0; 0; 0) as the origin and look at the action of SO+(1; d) on H,
two things become apparent. First is that the action of SO+(1; d) is transitive and free on
H, and secondly that the origin has stabilizer SO(d).1 This allows for the identification
of H ' SO+(1; d)=SO(d). The action of SO+(1; d) on H can be viewed as the left action
on the cosets gSO(d), and this establishes a relation between process on the Lie group
SO+(1; d) and processes onH. The next theorem describes how to obtain Markov processes
in H via the action of SO+(1; d). We shall use a more geometric approach to construct
diffusions, so the proof is left out.

Theorem 3.1.1 ([Lia04]Theorem 2.2 p.43). Let � : SO+(1; d) ! H, h = (h0; : : : ; hd) 7!
h0. If g = (gt : t > 0) is an SO(d)-invariant Lévy process on SO+(1; d) then � (gt) is a
càdlàg SO+(1; d)-invariant Feller process on H.

Conversely, for any càdlàg SO+(1; d)-invariant Feller process with laws f�tgt>0
on H there exists an SO(d)-invariant Lévy process g = (gt : t > 0) on SO+(1; d) such
that for each t > 0 the measure �t is the image measure of the law of gt under � .2

There is an alternative construction which extends to general Lorentz manifolds in
the next section. The Poincaré group P is the group of affine isometries of R1;d and it is
identified with SO+(1; d) � R1;d as it is the Lorentz group with a shift. Let OM be the
orthonormal frame bundle with the first element in H, then it can be identified with the
Poincaré group P where R1;d represents the points and SO+(1; d) represents the frames.3

Let e0; : : : ; ed be the canonical basis for R1;d and e�0; : : : ; e�d be the corresponding dual
basis with respect to q, viz. ei = (0; : : : ; 1; 0; : : : )T and e�0 = eT0 and e�i = (0; : : : ;�1; 0 : : : ).
Define Eij := e�i 
 ej � e�j 
 ei for i; j = 0; : : : ; d. These matrices generate so+(1; d), the
Lie algebra of SO+(1; d), where Ei := E0i correspond to the boosts transformations, i.e.
the Lie algebra of SO+(1; d)=SO(d). Then from the previous chapter, a Brownian motion

1A stabilizer is the subgroup that leaves the point invariant. This always allows for the identification
given. In this case, it is easy to see that the origin is fixed by Euclidian rotations.

2The map � can also be thought of as the left action map on the left cosets of SO+(1; d)=SO(d).
3The frames are identified with SO+(1; d) in the following way: suppose s0; : : : ; sd is an orthonormal

frame at a point p, and let e0; : : : ; ed be the canonical basis for R1;d (which is the same as the canonical
basis for Rd+1). Because the action of SO+(1; d) on R1;d is transitive, we can find an element of SO+(1; d)
that maps the canonical basis to the given orthonormal one.
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δt

g0
g1

g2

∑
gEiBδt

Figure 3.1: Diffusion on the frame bundle.

(gs; �s) 2 P solves

dgs =
dX

i;j=1

gisEij � dBi;j
s

d�s = g0sds

as the matrices Eij together with e0 form a basis for the Lie algebra of P. The rotations
fEijgi 6=0 act trivially on H and ultimately we shall map the diffusion using � : OM ! H
g 7! g0 and so we can ignore the trivial actions in which case we get the expression

dgs =
dX
i=1

gisEi � dBi
s

d�s = g0sds:

If we look at what the differential equation above does in a small time �t, we see that
first the frames are transported along the direction g0 keeping the frames parallel to this
line. Once we arrive at g0�t, then we apply a random change of bases and repeat the
process again (this time the direction of g0 may be different see Figure 3.1).

The following proposition will be proved in full generality in the next section, so we
omit the proof.

Proposition 3.1.2. The diffusion (gs; �s) 2 P given by the equations

dgs =
dX
i=1

gisEi � dBi
s

d�s = g0sds

where Bi; i = 1; � � � ; d are independent Brownian motions on R generate a diffusion
on H via the map �((g; �)) = g0 with the generator 1

2
�H.

The diffusion on H is then nothing but the projection of a process on the Lie group P
with independent increments, viz. a Brownian motion with drift. Furthermore the same
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technique can also be applied to Lévy process on the Lie group P. Using Corollary 2.3.6
we obtain a process on H with generator

L f(e0) = c�Hf(e0) +
Z
H
(f( _�)� f(e0)�

dX
i=1

yi( _�)@yif(e0))n(d _�)

where y1; : : : ; yd is a smooth co-ordinate system around e0 and n is measure on H that
satisfies

n(fe0g) = 0

n

 
dX
i=1

y2i

!
<1

n(U c) <1 for any neighbourhood U of e0:

3.2 Processes on Lorentz Manifolds
A Lorentz manifold (M; g) is an orientable pseudo-Riemannian manifold M with a metric
which has signature (1;�1; � � � ;�1).4 In light of the previous section we wish to construct
a process on T 1M , the positively oriented half of the unit sphere. Again we denote by
OM the orthonormal frame bundle with its first element in T 1M and � : OM ! T 1M
maps each frame to its first element.

The same construction at the end of the preceding section does not work on Lorentz
manifolds for two reasons; the frame bundle can no longer be identified with the Poincaré
group and secondly, there may not be a global tangent space and the geodesics may be
curved so d�s = g0ds no longer makes sense. However, there is an analogous method for a
similar construction on Lorentz manifolds and to do so we need some tools from geometry.

A connection may be used to connect tangent spaces and a natural choice is the Levi-
Civita connection r. The connection identifies curves in OM that are horizontal to T 1M
in the sense that if  � OM is a curve,5 then it is horizontal to T 1M if for each x 2 R1;d,
r�()x = 0 at each point of the curve. The space of vector fields that are horizontal is
denoted by H(OM) and allow for T (OM) to be decomposed as

T (OM) = H(OM)� V (OM):

The elements of V (OM) are called the vertical vector fields. Intuitively thinking, the
connection links up two tangent spaces in the sense that it allows us to identify vectors
in one of them from the other. If a curve in OM is horizontal, it means that the frames
transported parallel to the connection. In the case R1;d we had that the connection was
given by a straight line, and so we moved the frames staying parallel to the straight line
g0.

4The signature is the number of positive and negative eigenvalues of the metric. In this case, the metric
generates 1 positive eigenvalue and d negative eigenvalues.

5A curve on the orthonormal frame bundle is a smooth choice of frames at each point p 2M .
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We can also “lift“ points in T 1M to OM . This is due to the fact that for each X 2 T 1
pM

(the positively oriented half of unit sphere in TpM) and sp 2 OM we have a unique
horizontal vector ~X on OM such that �( ~X) = X (c.f. [Hsu02], [Mal97]).

Suppose sp 2 OM is an orthonormal frame on TpM , then we can view sp : R1;d ! TpM ,
via x 7! Pd

i=0 xis
i
p where s0p; � � � ; sdp are the frames. Using this, SO+(1; d) acts on OM in

the following way

R1;d S0
+(1; d)

- R1;d sp - TpM:

Indeed, the fibres of OM can be modelled on SO+(1; d). This action of SO+(1; d) on
OM is simply transitive.6

As before, let Eij := e�i 
 ej � e�j 
 ei for i; j = 0; : : : ; d and Ei := E0i. The vertical
fibres of OM infinitesimally behave like so+(1; d) and so defining the vector fields Vij as
the actions of Eij, i.e.

Vijf(u) :=
d

dt
f(etEiju)

���
t=0

defines vertical vector fields which generate V (OM).7

Fix a starting point u 2 OM and let H0 be the horizontal lift of �(u). In a small time
period �t, we push the frames along H0 for �t time, then permute them with random noise
using Vij. As before, the vector fields fVij : 1 6 i; j 6 dg generate the rotations and so
they act trivially on T 1M , hence we can restrict our attention to the vector fields fVigdi=1.

Formulating this, we have that the diffusions on OM are of the form

d�t = H0(�s)ds+
dX
i=1

Vi(�s) � dBi
s �0 = u

where B1; : : : ; Bd are independent Brownian motions on R. The generator of the diffusion
is then given by

H0 +
1

2

dX
i=1

V 2
i :

Intuitively the operator
Pd
i=1 V

2
i should give us some sort of a Laplace operator. Recall

that a Laplace operator is given by �f = div grad f = trace(H(f)) where H(f) is the
Hessian matrix, i.e. the matrix of second order derivations. The second derivations may
be thought of as ViVj as EiEj are the derivatives in the Lie group around the identity,
then the trace is precisely

Pd
i=0 V

2
i . The rest of the section will go towards proving this

mathematically.
6I.e. free and transitive. The reason for this is that via a rotation, we can obtain one orthogonal frame

from an other. In order for the frames to remain orthonormal we must apply SO(1; d) and for the first
element to remain in the positively oriented half, the action must be that of SO+(1; d).

7This is due to the fact that one can identify a one form between OM and so+(1; d) where the kernel
contains the horizontal vector fields, c.f. [KN69]. Indeed this allows Vij to generate all the vertical vector
fields on OM .
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If we let gij = h(@=@xi); (@=@xj)i and gij be the inverse of gij then the Laplace-Beltrami
operator can be expressed locally as

�M =
1

2
gij
 

@2

@xi@xj
� �kij

@

@xk

!

where �kij are the Christoffel symbols given by

�kij@k = rd@i@j

where @i = (@=@xi).
The following theorem then closes off this section nicely.

Theorem 3.2.1. The operator V :=
Pd
i=1 V

2
i induces on C 2(T 1M) the Laplacian �v

in the sense that for any f 2 C 2(T 1M)

(�Mf) � � = V(f � �)

Proof. Let e0; : : : ; ed be the canonical basis for R1;d. The exponential matrix etEi is given
by8 0

BBBBBBBBBB@

cosh t 0 � � � sinh t 0 � � �
0 1 0 � � � 0 � � �
... . . .

sinh t cosh t
0 1
... . . .

1
CCCCCCCCCCA

and so we have that the only terms that change are

etEie0 = e0 cosh t+ ei sinh t

etEiei = ei cosh t+ e0 sinh t

and so

d

dt
etEie0

���
t=0

= ei

d

dt
etEiei

���
t=0

= e0

with (d=dt)etEiej = 0 for j 6= i; 0.

8This and a few other computations have been left out as they can be confirmed with the aid of a
computer thus add no real value to the proof.
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Choose the coordinate system (xj; ej), ej = (ej0; : : : ; e
j
d) inOM such that ei = eki (@=@x

k)
then for any f 2 C 2(OM) using the chain rule we have

Vif(ux) =
d

dt
f(etEiux)

���
t=0

=
detEiek0
dt

���
t=0

@

@ek0
f(ux) +

detEieki
dt

���
t=0

@

@eki
f(ux)

= ek0
@

@eki
f(ux) + eki

@

@ek0
f(ux):

Hence the action of Vi is given by

Vi = ek0
@

@eki
+ eki

@

@ek0
:

Using the fact
Pd
i=1 e

k
i e
l
i + gkl = ek0e

l
0 one can directly compute

Vf � � =

 
(ek0e

l
0 � gkl)

@2

@ek0e
l
0

+ dek
@

@ek0

!
f � �:

3.3 Asymptotic Behaviour in Minkowski Spacetime
If we fix the point p = (1; 0; 0; 0) 2 H and take x = (x0; x

�) 2 H, then x may be expressed
in polar co-ordinates (�; �) 2 R+ � Sd�1 by � = cosh�1(x0) and � = x�=

q
x20 � 1. The

asymptotic properties of _�s is indeed different than a Brownian motion on a Euclidian
space. The described set up was established by Dudley in [Dud65] who proved that the
radial part of the process �s is transient. In [Bai08b] and [BR08] describe more properties
of this process. The latter shall provide a reference for the remainder of section where we
will prove that the angular part �s of the process _�s converges to some random angle �1,
which in turn implies that �s asymptotically approaches a hyperplane at a random height,
see Figure 3.3.

Theorem 3.3.1. Writing out _� in polar co-ordinates (�t; �t), we have that

�t = �0 + �t +
d� 1

2

Z t

0
coth �sds

�t = �

 Z t

0

ds

sinh2 �s

!
(3.3.1)

where � and � are independent Brownian motions on the reals and Sd�1 respectively.

Proof. Notice that q = d�2 + sinh2 � d�2 where d�2 is the Reimannian metric on Sd�1. A
direct computation shows that the Laplace-Beltrami operator on H can be expressed as;

�H =

 
@

@�

!2

+ (d� 1) coth �
@

@�
+

�Sd�1

sinh2 �
(3.3.2)
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where �Sd�1 is the Laplace-Beltrami operator on Sd�1.
To obtain the first equation use the map r(x) = � and the fact that _� is a 1=2�H-

diffusion to get that

�t = �t � �0 � 1

2

Z t

0

 
@

@�

!2

+ (d� 1) coth �
@

@�
r( _�s)ds

is a continuous local martingale. The action on f can be shown via direct computation to
be (d� 1)=2 coth and so the only remaining task is to show that � is a Brownian motion.
Notice that we have;

1

2
�Hr

2 � r�Hr =
1

2
(2 + 2(d� 1)� coth �� 2(d� 1)� coth �) = 1

and so the quadratic variation of � is

[�]t =
Z t

0

1

2
(�Hr

2 � r�r)( _�s)ds = t

and hence � is Brownian motion by Lévy’s characterisation.
Similarly by taking f(x) = � gives that

Mf
t := �t � �0 � 1

2

Z t

0

�Sd�1

sinh2 �
f( _�s)sds

is an Sd�1-valued continuous local martingale. Let �t be the right inverse of t 7! R t
0

ds
sinh2 �s

,
then �t =Mf

�t is a time change Brownian motion by Dubins-Schwarz theorem.
For the independence we have that

�H(fr) = (d� 1)� coth �+
��Sd�1f

sinh2 �

f�Hr = (d� 1)� coth �0

r�Hf =
��Sd�1f

sinh2 �

and so
[�;�]t = �H(fr)� r�H(f)� f�H(r) = 0:

Using this theorem we may now prove the intended result.

Theorem 3.3.2. Suppose that _� = ( _�t : t > 0) is a Brownian motion on H with polar
co-ordinates (�t; �t) and � = (�t : t > 0) given by �t = �0 +

R t
0
_�s� ds, then

(i) �t is transient
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Rσ∞

e0
σ∞

e 0
+
σ∞

Figure 3.2: Asymptotic behaviour of Brownian motion in R1;d

(ii) �1 := limt!1 �t exists almost surely and moreover if the process is started from
e0 then �1 is uniformly distributed on Sd�1

(iii) The random height R�1 := limt! q(�t; e0 + �1) exists and so the process �
approaches asymptotically the random hyperplane parallel to e0 + �1 at hight R�1

Proof. (i) Due to the fact that coth > 1 and the monotonicity of the integral,

�t > �0 + �t +
d� 1

2

Z t

0
ds = �0 + �t +

d� 1

2
t

By the strong law of large numbers and Donsker’s invariance principle the process
�t +

d�1
2
t!1 as t!1 and hence the result follows.9

(ii) The convergence is an immediate consequence of the preceding theorem, part (i)
and the law of the iterated logarithm which ensures that �t fluctuates as

p
2t log log t for t

large enough.10 The distribution of �1 started from e0 is uniform because the law of the
Brownian motion is invariant under the rotations and as the rotations fix e0 the law of �1
must be invariant under rotations. The uniform distribution is the unique distribution on
Sd�1 with this property.

9The alternative is to let Ta := infft > 0 : �t + ct = ag where c = (d � 1)=2. Now for a < 0 < b by
Girsanov’s theorem we have P(Tb < Ta) =

1�e2ac)
1�e�2(b�a)c : By letting a # �1 we have that P(Tb <1) = 1 and

by b " 1 we have P(Ta <1) < 1. Now we can apply the strong Markov property to conclude the result.
10The law of the iterated logarithm states that lim �sp

2s log log s
= 1 and consequently via symmetry

lim �sp
2s log log s

= �1 a.s., c.f. [KS91]



3.4 h-Transformations Stochastic Processes in Spacetime 24

For the moment we cannot prove the last part of the statement. In the next section
we shall become acquainted with the tools necessary to solve this problem.

3.4 h-Transformations
We will prove that the limit limt!1 q(�t; e0 + �1) exists by conditioning on the process
hitting a particular value of �1. Unlike previously, in this section we start the diffusions
at some point (�; _�) 2 R1;d �H and denote the law by P(�; _�) or where appropriate we will
drop one of the coordinates and simply write P� = P(�; _�)(� �H) or P _� = P(�; _�)(R1;d � �).

Suppose that a process has generator L and that h is a positive, bounded L-harmonic
function, that is Lh = 0.11 The h-transform of a process is an other process that has
generator Lhf := (L(hf))=h.

Informally, we will take as our harmonic function h�( _�) = P _�(�1 = �). More formally,
this will be the density of �1 with respect to the uniform measure d� on Sd�1.

Proposition 3.4.1. For any (�; _�) 2 R1;d � H, the distribution of �1 under P(�; _�) is
continuous with respect to the uniform measure d� on Sd�1 and thus admits a density
h�.

Proof. This follows easily from Theorem 3.3.1 as Brownian motion is continuous with
respect to the uniform measure on Sd�1 regardless of the starting position.

Now we assume that � 2 Sd�1 is fixed. To simplify matters, sometimes it is more
convenient to work in the Poincaré half plane model R� � Rd�1. The Riemannian metric
at a point (y; x) 2 R� � Rd�1 is given by

X;Y 2 Rd hX;Y i(y;x) =
hX;Y iE
y2

where h�; �iE is the Euclidian scalar product. This is a model for the hyperbolic space H
as the following map is an isometry;

H 3 ( _�0; � � � ; _�d)  �17�!
 

1
_�0 � _�1

;
_�2

_�0 � _�1
; � � � ;

_�d

_�0 � _�1

!
2 R� � Rd�1

R� � Rd�1 3 (y; x)
 7�!

 jjxjj2E + y2 + 1

2y
;
jjxjj2E + y2 � 1

2y
;
x1
y
; � � � ; xd�1

y

!
2 H

where jj � jjE is the Euclidian norm.
The Laplace-Beltrami operator on R� � Rd�1 is given by

�H = y2(@2x1 + � � �+ @2xd�1 + @2y)� (d� 2)y@y:

11No generality is lost in assuming that the harmonic functions are positive. Indeed for any bounded
harmonic function h, h� inf h is also harmonic.
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As the diffusion on H has generator (1=2)�H, then by denoting @ _�f(�; _�) as the deriva-
tive of � along _�, we have

Lf :=
�Hf

2
+ @

_�f:

In [Pin95][Theorem 9.5.2] Pinsky proves that for any measurable set U � Sd�1, (�; _�) 7!
P(�; _�)(�1 2 U) defines a harmonic map and in particular this implies that h� is harmonic.
Let Lh� denote the h-transform, i.e. Lh�f = L(hf)=h, and p(t; x; dy) be the transition
kernels of (�s; _�s). Define

ph
�

(t; x; dy) =
h�(y)

h�(x)
p(t; x; dy)

The process given by the transition kernels has generator Lh� and12 thus solves the
Lh

� martingale problem

Mf = f(�t; _�t)�
Z t

0
Lh

�

f(�s; _�s)ds

and hence must be strongly Markovian. The continuity of the process is apparent from
the kernels.

Proof of Theorem 3.3.2 (iii). We can find more information about h� by looking at the
Poincaré ball model of the hyperbolic space. Let Bd � Rd be the open unit ball. The
hyperbolic space can be thought of as living in Bd by using the following map to induce
a metric on it (c.f. [BH99])

H 3 ( _�0; � � � ; _�d) ��17�!
 

_�1

1 + _�0
; � � � ;

_�d

1 + _�0

!
2 Bd

Bd 3 x �7�!
 
1 + jjxjj2E
1� jjxjj2E

;
2x

1� jjxjj2E

!
2 H:

Notice that this map preserves the conformal boundary, i.e. �(�) = � for each � 2 Sd.
The corresponding map between the half-plane R� � Rd�1 and Bd is then given by;

R� � Rd�1 3 (y; x)
��17�!

 jjxjj2E + y2 � 1

jjxjj2E + (1 + y)2
;

2x

jjxjj2E + (1 + y)2

!
2 Bd

Bd 3 x �7�!
 jjxjj2E � 1

1� 2x1 + jjxjj2E
;

2xd
1� 2x1 + jjxjj2E

; : : : ;
2x2

1� 2x1 + jjxjj2E

!
2 R� � Rd�1:

The Poisson kernel13 K(x; �) is well known in the ball and is given by (c.f. [Doo84])

K(x; �) =
1� jjxjj2E
jj� � xjjdE

:

12consult [Pin95][Theorem 4.1.1]
13Probabilistically, this is the density of a Brownian motion starting at x 2 Bd and hitting � 2 Sd.
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σ + e0

e0

−σ

Rσ

Figure 3.3: New random co-ordinates on R1;d given by g0

Suppose now we tilt the axis by defining a new basis f�0; � � � ; �dg � R1;d by letting
�0 = e0, �1 = � and �2; � � � ; �d be orthonormal. To avoid confusion, we let _� = ( _�0; : : : ; _�d)
be in the new co-ordinate system. We can also specify, as above, half-space coordinates
by letting g = (�0; �1; � � � ; �d) and (y; x) =  �1(g�1�). The Laplacian on R� � Rd�1 with
the new co-ordinates has the same expression has above.

Notice that the point � in these co-ordinates corresponds to (1; 0; : : : ; 0) 2 Bd, which
corresponds to 1 2 @(R��Rd�1), where @A is the conformal boundary of A. The hitting
density h�1(y; x) then is invariant under translations in x 2 Rd�1 so it suffices to compute
h�1(y; 0). Using the kernel on Bd, we obtain that h�1 is proportional to a polynomial of
degree d�1, and using the fact that �Hh

�1 = 0 we obtain that h�1 is proportional to yd�1.
Thus

Lh
�1
f =

y2

2
(@2xf + @2yf) +

d

2
y@yf + @

_�f

The y terms are nothing but the description of an Itô diffusion in R and so this has
the expression

dys = ysdBs +
d

2
ysds

where B = (Bt : t > 0) is a Brownian motion in R. This is just a geometric Brownian
motion.

If we change the co-ordinates once more using g0 := (��1; �0 + �1; �2; : : : ; �d), we see
that now that it is sufficient to find the bound of the processes in these co-ordinates (see
Fig3.4). Let (�00; : : : ; �0d) be � 2 H expressed in the co-ordinates given by g0, then

d�00s =
ds

ys
=

ds

y0e
Bs+

d�1
2
s
:

On the other hand, observe that �00 = q(�; �1 + e0) and so recalling that R�1 =
lims!1 q(�s; �1 + e0), we have

R�1 = �00 +
1

y0

Z 1

0
e�Bs�

d�1
2
sds:
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It remains to see that the integral is finite. This is a consequence of the fact that as
noted before Bs + Cs ! 1 as s " 1, where C is a constant, and the law of the iterated
logarithm.



Chapter 4

Poisson Boundary
In the last section we encountered h� which is a bounded harmonic function that is non-
constant. Indeed this contrasts starkly with the Euclidian case where Liouville’s theorem
states that any bounded harmonic function must be constant. To keep notation to a
minimum we denote by (�s; _�s) the diffusion described as before. The invariant �-algebra
Inv((�s; _�s)) given by events of the form (�s; _�s) 2 A if and only if (�s+t; _�s+t) 2 A for each
t > 0.

Theorem 4.0.2 (Correspondence Between Probability and Analysis). If h is a bounded
L-harmonic function then there exists an X 2 Inv((�s; _�s)) such that

h(�; _�) = E(�; _�)[X]:

Conversely, any function in the above form for some X 2 Inv((�s; _�s)) is L-
harmonic.

Proof. Suppose that h is bounded and L-harmonic, then by Itô’s lemma h((�s; _�s)) is
a bounded Martingale and thus by the Martingale convergence theorem, converges to a
random variable X a.s. It is clear that X 2 Inv((�s; _�s)) and moreover by the optional
stopping theorem Ee[X] = h(e).

Conversely take X 2 Inv((�s; _�s)) and denote by �s the shift operator, then

PtE(�; _�)[X] = E(�; _�)[E(�s; _�s)
[X]] = E(�; _�)[X � �s] = E(�; _�)[X]

which shows that (�; _�) 7! E(�; _�)[X] is harmonic.

Thus the invariant �-algebra determines the behaviour of the harmonic functions. One
has a-priori that Inv((�s; _�s)) � Tail((�s; _�s)) and so in the case of some manifolds, the
tail �-algebra fails to be trivial.

It is readily seen now that it is enough for the angular part of a process to converge in
order to obtain a non-constant bounded harmonic function.1

The Poisson boundary is the set of bounded harmonic functions and as before, no
generality is lost in assuming that these functions are positive. Most of the discussion so
far has been towards the behaviour of the process in R1;d �H. Indeed this relates to the
Poisson boundary via the following;

(i) The �-algebras Inv(�s; _�s), Tail(�s; _�s) and �(�1; R�1) co-inside P(�; _�)-a.s.

1Note that the process is invariant under isometries, and hence if the angular part converges then it will
be invariant under rotations (given that the rotations leave the origin invariant) so the invariant algebra
will be non-trivial.
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(ii) The joint law of (�1; R�1) is continuous with respect to d� dl, the product measure
of the uniform measure on Sd�1 and the Lebesgue measure on R, and admits a density
h�(�; _�)h�l (�; _�)

(iii) For any starting point (�; _�) 2 R1;d � H, the positive function h�h�l is a minimal
L-harmonic function, in the sense that if u 6 h�h�l is harmonic, then u = Ch�h�l for some
constant C

(iv) Consequently a positive bounded harmonic function is of the form
R R

Fh�h�l d�dl,
where F : Sd�1�R! R is Borel measurable, and conversely any function of that form for
some Borel measurable F is a positive bounded harmonic function.

There are two methods of proving these statements found in [Bai08b] and [BR08].
In [Bai08b] Bailleul uses the coupling method to prove these statements. The idea of

coupling is to look at a pair of stopping times (S; T ) such for processes (�s; _�s), (�s;
_�
s
) with

starting distributions � and � respectively, couple at (S; T ) i.e. P((�S; _�S) = (�
T
; _�
T
)) = 1.

Coupling then allows us to express;

P(T =1) + P(S =1) = supfh�� �; hi : h > 0 harmonic function ; jjhjj < 1g
where the norm is the uniform Banach norm (see [CG95]).

Bailleul shows that bounded Lh�h�l -harmonic functions are constant by showing that
the processes with generator Lh�h�l couple in a finite time. Through Theorem 4.0.2 this
shows that the tail �-algebra of the Lh�h�l -diffusion is trivial. It is well known (see [Doo84]
for instance) that the h-transform corresponds to the process conditions on hitting a
conformal boundary point, hence this shows that indeed the invariant �-algebra is given
by �(�1; R�1).

An alternative approach is given in [BR08], where Bailleul and Raugi look at the
random walk on the Poincaré group P. Naturally, P is just R1;d�SO+(1; d) and the map
P 3 (�;g) 7! (�;g0) 2 R1;d �H helps us project results.

The Iwasawa decomposition allows for a decomposition of the Lie algebra so+(1; d)
into k + a + n where the and the associated groups K, A and N . This is similar to the
Cartan decomposition in the sense that K � A � N ! SO+(1; d), (k; a; n) 7! kan is a
diffeomorphism. The algebras are given by

k = so(d)

a is generated by E1 = e�0 
 e1 � e�1 
 e0

n =

8>>>><
>>>>:

0
BBBB@
0 0 xT 0 � � �
0 0 xT 0 � � �
x �x 0 0 � � �
0 0 0

. . .

1
CCCCA : x 2 Rd�1

9>>>>=
>>>>;
:

This allows one to decompose the Lie group P into D� � D+ � SO(d) where D� =
R(e0+ e1)�N and D+ = (R(e0� e1)� spanfe2; : : : ; edg)�A. Again the map D��D+�
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SO(d) 3 (d�; d+; k) 7! d�d+k 2 P is a diffeomorphism. A random walk en = (�n;gn) 2 P
can now be split into en = d�nd

+
nkn where d�n 2 D�, d+n 2 D+ and kn 2 SO(d).

Bailleul and Raugi then prove that the limit lims!1 d
�
s exists Pe-a.s. and that any D�-

left invariant bounded harmonic function is constant. Indeed this convergence is much
similar to that of the h-transform method, and allows for a similar expression for the
bounded harmonic functions.

The Poisson boundary of general Lorentz manifolds is still unknown. Though it is
known that on complete manifolds with non-negative Ricci curvature, Liouville’s theorem
holds, i.e. every bounded harmonic function is constant (c.f. [Hsu88]). Perhaps one could,
on some spaces, associate the Lh�h�l -diffusion with a �M -diffusion on a complete manifold
M with non-negative Ricci curvature and obtain results similar to that of Bailleul and
Raugi.

We leave the reader with the following epilogue;

"The most beautiful thing we can experience is the mysterious. It is the source
of all true art and all science. He to whom this emotion is a stranger, who can
no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes
are closed."

-Albert Einstein
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