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CHAPTER 1
Introduction

A coalescent-fragmentation process is a particle system in which particles can coalesce
or fragment as time runs forward. A process for which only coalescence (resp. frag-
mentation) occurs is called a coalescent (resp. fragmentation process). Coalescent-
fragmentation processes have found a large number of applications in physics, chemistry
and biology.

This thesis consists of two separate works, both of which study coalescent-fragmentation
processes from a geometric point of view. The first work, Şengül [50], presented in Chap-
ter 2, deals with scaling limits of coalescent processes near time zero. We approach this
problem by viewing the coalescent process as a metric space and then taking a suitable
scaling limit of this metric space. The second work, Berestycki and Şengül [13], pre-
sented in Chapter 3, concerns the mixing times of random walks on the permutation
group. These random walks can be seen as certain coalescent-fragmentation processes.
We investigate their mixing times by viewing the permutation group as a graph and
showing bounds on a certain notion of curvature on this graph.

This chapter contains the background for both of these works and some of the ideas
behind the proofs.

1.1 Coalescent Theory

1.1.1 Kingman’s Coalescent

Coalescent theory is a retrospective model of population genetics. It traces back the
lineages of a sample from the current population to find their most recent common an-
cestor. The inheritance relationships between individuals are typically represented as a
phylogenetic tree, see Figure 1.1.

1Generated using the Interactive Tree of Life: http://itol.embl.de/

1
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Figure 1.1: A phylogenetic tree showing the ancestral relationship of sampled organisms.1
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The most natural probabilistic model of a coalescent appeared in the seminal paper of
Kingman [33]. It is defined as follows. For n ∈ N, a coalescent process Π(n) = (Π(n)(t) :

t ≥ 0) is a Pn-valued process, where Pn is the set of partitions of [n] := {1, . . . , n}.
Suppose that initially we start from the trivial partition consisting of singletons and
thereafter each pair of blocks merges at rate 1. One trivial but important property is
that this process is consistent, meaning that for every n ∈ N, the projection of Π(n+1) onto
Pn is the same as Π(n). This allows us to pass to the limit as n→∞ using Kolmogorov’s
extension theorem.

Definition 1.1.1 (Kingman’s coalescent). Let P∞ denote the set of partitions of N, then
there exists a process Π = (Π(t) : t ≥ 0) such that for any n ∈ N, the projection onto Pn
has the same law as Π(n) as described above. The process Π is called Kingman’s coalescent.

The canonical ordering on the blocks of Π(t) is by infimum: for i < j we have that
inf Πi(t) < inf Πj(t), where Πi(t) is the i-th block of Π(t) and by convention inf ∅ =∞.

Kingman’s coalescent Π describes the ancestral relationships between individuals in
the following way. For t ≥ 0, i and j are in the same block of Π(t), denoted by i

Π(t)∼ j,
if the individuals i and j share a common ancestor t years ago. Hence as t increases, the
blocks of the partition and thus the lineages coalesce.

An interesting phenomenon, known as coming down from infinity, occurs in Kingman’s
coalescent whereby the coalescent has finitely many blocks for all times t > 0. Let
N = (N(t) : t ≥ 0) denote the number of blocks of Π. The following result is well known.

Proposition 1.1.2. Kingman’s coalescent comes down from infinity meaning that

P(N(t) <∞ for all t > 0) = 1.

Moreover the following convergence holds almost surely and in L1 as t ↓ 0,

tN(t)→ 2.

Heuristic. At time t > 0 there are
(
N(t)

2

)
many pairs of blocks (this number may in fact

be infinite). Each of these pairs of blocks merges at rate 1 and when two blocks merge,
N decreases by 1. Hence N(t) roughly solves the differential equation

d

dt
N(t) ≈ −

(
N(t)

2

)
≈ −N(t)2

2

with the initial condition N(0) = ∞. The solution to this equation is given by N(t) ≈
2/t.
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1.1.2 Λ-coalescents

In this section we describe a generalisation of Kingman’s coalescent in order to allow for
coalescents with multiple mergers. Here we will detail the account of Pitman, however
note that this was discovered independently by Pitman [39], Sagitov [46] and Donnelly
and Kurtz [22]. We refer to Bertoin [14] and Berestycki [10] for an overview.

To make this generalisation we must first make precise which type of processes on P∞
we are considering. In order to do so we first introduce the notion of exchangeability.

Definition 1.1.3 (Exchangeability). For a partition π ∈ P∞ and a bijection σ : N→ N
with finite support, define σ(π) ∈ P∞ by i

σ(π)∼ j if and only if σ(i)
π∼ σ(j). Then a

random partition π ∈ P∞ is called exchangeable if π and σ(π) have the same distribution
for every bijection σ : N→ N with finite support.

Next we define the class of processes that are of interest.

Definition 1.1.4 (Simple Coalescent Process). A process Π = (Π(t) : t ≥ 0) on P∞ is
called a simple coalescent process if the following hold:

(i) the process Π merges blocks as it evolves in time,

(ii) there are no simultaneous mergers,

(iii) for each t ≥ 0, Π(t) is exchangeable,

(iv) for each n ∈ N let Π(n) denote the restriction of Π to {1, . . . , n}, then Π(n) has
the same law as Π(n+1) restricted to {1, . . . , n}.

It is not hard to check that Kingman’s coalescent is a simple coalescent processes.
The properties (i),(iii) and (iv) in the definition above arise naturally from population

genetics. Assumption (ii) can be relaxed to obtain what are known as Ξ-coalescents. We
do not discuss this here but refer the interested reader to Schweinsberg [49].

To obtain a simple coalescent process consider the following construction. For b ∈ N
and k ≥ 2 let λb,k denote the rate at which k fixed blocks merge when there are b blocks
present. Definition 1.1.4 (iii),(iv) imply

λb,k = λb+1,k + λb+1,k+1. (1.1)

Indeed as there are no simultaneous mergers, k fixed blocks among b blocks may merge in
two ways when we reveal an extra block b+ 1: either the k blocks merge by themselves,
without the extra block, or the k blocks together with the extra block merge.

Using (1.1) Pitman was able to show the following result.
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Theorem 1.1.5 (Pitman [39, Theorem 1]). There exists a coalescent process Π = (Π(t) :

t ≥ 0) such that the rate at which k fixed blocks merge when there are b blocks present is
given by λb,k, if and only if, there exists a finite measure Λ on [0, 1] such that

λb,k =

∫ 1

0

pk−2(1− p)b−kΛ(dp). (1.2)

This leads to the following natural definition.

Definition 1.1.6 (Λ-coalescents). For a finite measure Λ on [0, 1], a Λ-coalescent is a
simple coalescent process where the rate at which k fixed blocks merge when there are b
blocks present is given by λb,k defined in (1.2).

We give some important and well known Λ-coalescents in the table below.

Name Λ(dp) = λb,k =

Kingman’s coalescent δ0(dp)

{
1 if k = 2

0 otherwise

Bolthausen-Sznitman coalescent dp
(k − 2)!(b− k)!

(b− 1)!

Beta(2− α, α)-coalescent,
α ∈ (0, 2)

p1−α(1− p)α−1 dp

Γ(2− α)Γ(α)

sin(πα)Γ(k − α)Γ(b+ α− k)

πΓ(b)(1− α)

Table 1.1: Examples of Λ-coalescents.

The Beta(2 − α, α)-coalescent for α = 1 is just the Bolthausen-Sznitman coalescent
and when α → 2 the Beta(2 − α, α)-coalescent, as a process, converges to Kingman’s
coalescent.

There is a useful construction of a Λ-coalescent from a Poisson point process in the
case when Λ is non-atomic. Let Λ be a finite measure on [0, 1] without any atoms. Let
M be a Poisson point process on [0,∞)× [0, 1] of intensity dt⊗Λ(dp)p−2. For each atom
(t, p) ∈M of the point process, we perform a p-merger at time t: for each block of Π(t−)

flip a coin independently with probability p of heads, then merge all the blocks that are
marked by heads. Thus if we assume that Π(t−) = b then the probability we merge k
fixed blocks is precisely given by λb,k in (1.2).

At this point it is natural to investigate the coming down from infinity phenomenon for
Λ-coalescents. It is customary to assume that Λ({1}) = 0 as this avoids the uninteresting
case where the coalescent suddenly merges all the blocks present. We will always implicitly
assume this. Then there is a dichotomy between staying infinite forever and coming down
from infinity.
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Proposition 1.1.7 (Pitman [39, Proposition 23]). Suppose that Λ is a finite measure on
[0, 1] with no mass at one. Let Π = (Π(t) : t ≥ 0) be the associated Λ-coalescent and let
N = (N(t) : t ≥ 0) be the number of blocks of Π. Then

P({N(t) =∞∀t > 0} ∪ {N(t) <∞∀t > 0}) = 1.

Sufficient and necessary conditions for a Λ-coalescent to come down from infinity were
first given by Schweinsberg [48]. Later Bertoin and Le Gall [15] remark the equivalence
of this condition to an integral test.

Theorem 1.1.8 (Schweinsberg [48, Theorem 1] and Bertoin and Le Gall [15, eq. (31)]).
Suppose that Λ is a finite measure on [0, 1] with no mass at one. For b ≥ 2 let γb =∑b

k=2(k − 1)
(
b
k

)
λb,k. Then the Λ-coalescent comes down from infinity if and only if

∞∑
b=2

γ−1
b <∞. (1.3)

Equivalently this occurs if and only if∫ ∞
1

dx

ψ(x)
<∞ (1.4)

where ψ(x) =
∫ 1

0
(e−xp − 1 + xp)p−2Λ(dp).

Heuristics for (1.3). We present the heuristic proof in Berestycki [10, p. 76] which is
very similar to the heuristic proof of Proposition 1.1.2. The quantity γb gives the rate
of decrease when there are b blocks present. Indeed, there are

(
b
k

)
many ways to choose

k blocks from b blocks and k chosen blocks merge at rate λb,k. Once such a merger has
taken place, the number of blocks decreases by k − 1.

Thus roughly speaking the number of blocks N(t) at time t > 0 solves the differential
equation

d

dt
N(t) ≈ −γNt

with initial condition N(0) =∞. Hence it follows that for each t > 0∫ t

0

d
dt
N(s)

γNs
ds ≈ −t

Using the substitution x = N(s) we get that∫ ∞
Nt

1

γx
dx ≈ t.
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hence N(t) <∞ if and only if
∫∞

1
1
γx
dx <∞ which is the same as the condition (1.3).

1.1.3 Behaviour of SRV(α) Coalescent Processes near the Time

Zero

The main objective of the paper presented in Chapter 2 is to understand how a Λ-
coalescent process comes down from infinity. In order to examine this we first make an
assumption about the measure Λ.

Definition 1.1.9 (SRV(α)). We say that a measure Λ on [0, 1] is SRV(α) if Λ is strongly
regularly varying with index α ∈ (1, 2). That is when Λ(dp) = f(p) dp and there exists a
constant AΛ > 0 such that

f(p) ∼ AΛp
1−α as p→ 0 (1.5)

where the above notation means that the quotient of both sides approaches 1. We say that
Λ is SRV(2) when Λ = δ{0} and AΛ = 1.

The SRV(α) measures are used to model populations in which there is large variability
in the offspring distribution (see Berestycki [10, Section 3.2] for example). If Λ is SRV(2)

then the Λ-coalescent is Kingman’s coalescent. Further one can easily check (see Table
1.1) that for α ∈ (1, 2), Beta(2− α, α)-coalescents are covered by this assumption and in
this case Λ satisfies (1.5) with AΛ = (Γ(α)Γ(2− α))−1.

It is not hard to check that if Λ is SRV(α) for α ∈ (1, 2], then the corresponding
Λ-coalescent comes down from infinity. While it is possible to extend the definition of
SRV(α) to α ∈ (0, 1), we do not concern ourselves with this case as for α ∈ (0, 1) the
corresponding Λ-coalescent stays infinite forever. We assume henceforth that Λ is an
SRV(α) measure with α ∈ (1, 2].

First we present a theorem by Berestycki, Berestycki, and Schweinsberg [9] about the
rate at which Π comes down from infinity which extends Proposition 1.1.2.

Theorem 1.1.10 (Berestycki, Berestycki, and Schweinsberg [9, Theorem 1.1]). Suppose
that Λ is a finite SRV(α) measure with α ∈ (1, 2], Π = (Π(t) : t ≥ 0) is a Λ-coalescent
and N = (N(t) : t ≥ 0) is the process which counts the number of blocks of Π. The
following limit holds almost surely as t ↓ 0:

t1/(α−1)N(t)→
(

α

AΛΓ(2− α)

)1/(α−1)

.
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There are many frameworks for taking the scaling limit of a coalescent process near
time zero. One such approach is to consider the asymptotic frequencies. For t ≥ 0 and
i ∈ N we define the asymptotic frequency of Πi(t) as

Φi(t) = lim
m→∞

1

m

m∑
k=1

1{k∈Πi(t)}, (1.6)

with the convention that Φi(t) = 0 for i > N(t). It is not hard to show that the limit in
(1.6) exists by using the exchangeability of Π(t). As Π comes down from infinity we have
that almost surely for all t > 0,

∞∑
i=1

Φi(t) = 1, (1.7)

see Pitman [39, Theorem 8].
Naturally one may set Φ(t) = (Φ1(t),Φ2(t), . . . ), view Φ = (Φ(t) : t ≥ 0) as a

process on [0,∞)N and then take a scaling limit at time zero. Using Theorem 1.1.10,
one can guess that the correct scaling factor is ε−1/(α−1) and try to obtain a scaling limit
Ψ = (Ψ(t) : t ≥ 0) of (ε−1/(α−1)Φ(εt) : t ≥ 0) in the Skorokhod sense as ε→ 0. There is,
however, a substantial problem with this viewpoint which we now describe in detail.

Note that a sequence x(n) converges to x in [0,∞)N under the product topology if for
every m ∈ N,

sup
i≤m
|x(n)
i − xi| → 0 (1.8)

as n→∞. Now consider the asymptotic frequencies

ε−1/(α−1)Φk(εt) such that t ∈ [0, 1] and k is chosen so that
N(ε)

2
≤ k ≤ N(ε). (1.9)

From (1.8) we see that the frequencies in (1.9) will not be seen in the limit as ε → 0 as
they will be “pushed out to infinity”. On the other hand many of the frequencies in (1.9)
will merge with ε−1/(α−1)Φ1(εt) during the time interval [0, 1]. Thus the result is that in
the limit (Ψ1(t) : t ∈ [0, 1]) will increase its size without merging with other frequencies.
Hence we have missed some of what is happening.

Similar problems occur when considering other natural orderings of (Φ1(t),Φ2(t), . . . )

e.g. ordered by size. Any ordering that avoids this problem is too complex to study with
the current tools available to us. The only exception is the case when α = 2 where one
can use the construction in Aldous [4, Section 4.2]. In order to overcome this difficulty
we view the coalescent as a metric space.
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i j

δ(i, j)

Figure 1.2: Tree view of the Evans space associated to a coalescent. The distance between a
pair of points i, j is given by the first time the unique paths from i and j to the root meet.

1.1.4 Evans Metric Space

As before we assume that Π is a Λ-coalescent where Λ satisfies SRV(α) for α ∈ (1, 2]. We
wish to represent Π as a metric space. This is done by the so called Evans space (E, δ)

associated to the coalescent Π, which is defined as follows. First we define a metric δ on
N by letting it measure the time of the most recent common ancestor:

δ(i, j) = inf{t > 0 : i
Π(t)∼ j},

see Figure 1.2. Next we let (E, δ) be the completion of (N, δ). Clearly (E, δ) contains all
the information about the coalescent Π. This space was introduced by Evans [26] in the
case of Kingman’s coalescent.

We begin by showing compactness for (E, δ).

Proposition 1.1.11. The space (E, δ) is compact.

Proof. Recall that a metric space is compact if and only if it is totally bounded (for each
ε > 0, there are finitely many ε-balls that cover the space) and complete. As (E, δ) is
complete by definition, we just need to check that it is totally bounded. A closed ball of
radius ε > 0 around i is given by the closure of {j ∈ N : j

Π(ε)∼ i}. Hence every closed ball
of radius ε > 0 corresponds to a block of Π(ε). Thus the number of such closed balls of
radius ε is precisely N(ε), the number of blocks at time ε. The result now follows since
Π comes down from infinity.

Our goal is to find a suitable way to describe the process near time zero. The way we
do this geometrically is as follows. Let ε > 0 and fix a point i ∈ N and a radius r > 0.
Consider the closed ball B(i, rε) around i of radius rε > 0. Note that this block contains
all j ∈ N such that the block containing j merges with the block containing 1 during the
time interval [0, rε]. Consider the metric space (B(i, rε), ε−1δ), where the scaling on the
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metric means that the diameter of the space is equal to r for any ε > 0. A main result of
Chapter 2 is the verification of the following convergence.

Theorem 1.1.12. There exists a metric space (S, dS) and a point o ∈ S such that when
we let ε ↓ 0, the space (B(i, rε), ε−1δ) converges in a certain sense to (BS(o, r), dS).

Note that the triple (S, dS, o) in Theorem 1.1.12 depends on the value of α ∈ (1, 2].
We will characterise the space (S, dS) momentarily. First we present a result which is

both crucial in the proof of Theorem 1.1.12 and is of independent interest. This result
describes the mergers of the block containing 1 at small times and this description will
allow us to depict the space (S, dS). Roughly speaking, this result should be interpreted
as a local limit in the spirit of Benjamini and Schramm [6]. More precisely, for ε > 0 and
r ∈ [0, 1) let Zε(r) be the number of blocks of Π ((1− r) ε) that make up Π1(ε), the block
containing 1 at time ε. Hence there exists 1 = i1 < · · · < iZε(r) such that

Π1(ε) = Πi1((1− r)ε) ∪ · · · ∪ ΠiZε(r)
((1− r)ε).

Theorem 1.1.13. As ε→ 0, Zε → Z in the Skorokhod sense on [0, s] for every s ∈ [0, 1).
The process Z is an inhomogeneous Markov process with generator

Lr(f)(i) = AΛ

∑
j≥1

(j + i)
Γ(2− α)Γ(j − α + 1)

(1− r)αΓ(j + 2)
[f(i+ j)− f(i)]

when α ∈ (1, 2) and

Lr(f)(i) =
(i+ 1)

1− r [f(i+ 1)− f(i)]

when α = 2.

One can also write the limiting process Z as a time-change of a certain Galton-Watson
process with immigration (see Chapter 2).

We will now depict how the closed unit ball BS(o, 1) ⊂ (S, dS) is constructed from
the process Z. First construct a tree T from the process Z. Start the tree with one
particle called the root. Whenever the process Z makes a jump of size k select a particle
uniformly at random; this particle gives birth to k offspring. Thus for each r ∈ [0, 1),
there are precisely Z(r) particles which are at distance r from the root. The process
Z(r) explodes as r → 1 so we have infinitely many particles at distance one from the
root. The space BS(o, 1) is the set of particles at distance one from the root. For each
v, w ∈ BS(o, 1) there exists two unique paths from the root ending at the points v, w and
these paths deviate at distance hv,w ≥ 0 from the root. The distance between two points
is given by dS(v, w) = 1− hv,w.
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In the case of Kingman’s coalescent we have an alternative construction of (S, dS) from
a two-sided Brownian motion W = (Wt : t ∈ R) as follows. Let N := {t ∈ R : W (t) = 0}
be the zero set of W . For x, y ∈ N with x ≤ y define a pseudo-metric on N by

dS(x, y) := sup{W (t) : t ∈ [x, y]}.

Note that if there are only negative excursions between x and y for x 6= y, then dS(x, y) =

0. We then define S to be the quotient space N / ∼ where x ∼ y if and only if dS(x, y) = 0.
We will verify that (S, dS) can be constructed in this way for α = 2 in Chapter 2, Theorem
2.1.3.

1.2 Random Walks on the Permutation Group

1.2.1 Mixing Time of Random Walks on the Permutation Group

Let Sn denote the set of permutations of {1, . . . , n}. Any permutation σ ∈ Sn has a
unique cycle decomposition which partitions {1, . . . , n} into the orbits of σ. For example
the permutation

σ =

(
1 2 3 4 5 6 7 8

5 4 3 6 1 2 8 7

)
has 4 orbits, (1 5), (3), (2 4 6), (7 8). A fixed point i is such that σ(i) = i and it is cus-
tomary to not include the fixed points in the cycle decomposition. Thus this permutation
is written as σ = (1 5)(2 4 6)(7 8).

The cycle structure (k2, k3, . . . ) of a permutation is a vector of integers such that
in the cycle decomposition of σ there are k2 many 2-cycles (called transpositions), k3

many 3-cycles and so on. For the example above we have that the cycle structure of σ is
(2, 1, 0, . . . ) as there are two transpositions and one 3-cycle in the cycle decomposition.

A conjugacy class Γ ⊂ Sn is a set of permutations having the same given cycle
structure. Let |Γ| denote the support of Γ which is the number of non-fixed points of any
permutation in Γ. Thus by definition we have that |Γ| = ∑j≥2 jkj.

Every permutation can be decomposed into a product of transpositions. Such a de-
composition is not necessarily unique but the number of transpositions needed is always
either even or odd. We call a permutation σ even if the number of transpositions needed
to write down σ is even, otherwise we call σ odd. Every element of a conjugacy class Γ

has the same parity: they are either all odd or all even. Hence it makes sense to say if
Γ is even or odd. It is well known that if Γ is odd then Γ generates the whole group Sn
while if Γ is even then Γ generates the group An of even permutations.
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Figure 1.3: The Cayley graph of S6. An edge between two permutations is present whenever
they differ by a transposition.
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Let Γ ⊂ Sn be a conjugacy class. Then the discrete random walk X = (Xt : t ≥ 0)

associated with Γ is constructed as follows: define X0 = id and for t ≥ 1 define

Xt = γ1 ◦ · · · ◦ γNt (1.10)

where γ1, γ2, . . . are i.i.d. random variables which are distributed uniformly in Γ and
N = (Nt : t ≥ 0) is a rate 1 Poisson process. Then X is a Markov chain which has an
invariant measure µ. If Γ is odd then µ is uniformly distributed on Sn and if Γ is even
then µ is uniformly distributed on An.

Let pt(·) denote the law of Xt and define

dTV (t) := ||pt − µ||TV = sup
A⊆Sn

|pt(A)− µ(A)| (1.11)

to be the total variation distance between pt and the invariant measure µ. The defi-
nition in (1.11) is useful for obtaining lower bounds for dTV (t) but not very useful for
upper bounds. An alternative formula (see for example Levin, Peres, and Wilmer [34,
Proposition 4.7]) is given by

dTV (t) = inf
X′t∼Xt,X∞∼µ

P(X ′t 6= X∞)

where the infimum is taken over all couplings of X ′t and X∞ which are distributed Xt

and µ respectively.
Let us first observe some basic facts about dTV for large n. Initially we have that

limn→∞ dTV (0) = 1 as n→∞. The function t 7→ dTV (t) is decreasing and intuitively the
lower the value of dTV (t) the more the random walk resembles its invariant distribution.
Finally dTV (∞) = 0 because the random walk at time t converges towards its invariant
distribution as t → ∞. We would like to know if there exists a time tmix = tmix(n) such
that for each ε > 0,

lim
n→∞

dTV ((1− ε)tmix) = 1 and lim
n→∞

dTV ((1 + ε)tmix) = 0. (1.12)

The time tmix is referred to as a mixing time and the phenomenon occurring in (1.12) is
known as the cut-off phenomenon.

Diaconis and Shahshahani [21] were the first to study this phenomenon (at the same
time and independently from Aldous [2]) and they arrived at the following result.

Theorem 1.2.1 (Diaconis and Shahshahani [21]). Let Γ be the set of all transpositions
and consider the random walk associated to Γ. Define tmix = (1/2)n log n, then for any
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ε > 0 we have that

lim
n→∞

dTV ((1− ε)tmix) = 1 and lim
n→∞

dTV ((1 + ε)tmix) = 0.

Since the work of Diaconis and Shahshahani [21], a long standing open problem has
been to show that the cut-off phenomenon holds for any conjugacy class Γ such that
|Γ| = o(n). Further it has been conjectured that for such conjugacy classes we have that
tmix = (1/|Γ|)n log n. We detail the history of this problem in Chapter 3. The following
theorem, which is the primary result presented in Chapter 3, verifies this conjecture.

Theorem 1.2.2. Suppose that Γ ⊂ Sn is an arbitrary conjugacy class with |Γ| = o(n).
Define tmix = (1/|Γ|)n log n, then for any ε > 0 we have that

lim
n→∞

dTV ((1− ε)tmix) = 1 and lim
n→∞

dTV ((1 + ε)tmix) = 0.

The proof of the statement limn→∞ dTV ((1− ε)tmix) = 1 follows from a simple coupon
collector argument. It is a straightforward adaptation of the argument in Diaconis and
Shahshahani [21] for the case of transpositions which we present now.

Proposition 1.2.3. Suppose that Γ is the set of all transpositions and consider the ran-
dom walk associated to Γ. Then we have that for any ε > 0,

lim
n→∞

dTV ((1− ε)(1/2)n log n) = 1.

Proof. Fix ε > 0 and let t = (1 − ε)(1/2)n log n. Whenever we apply the transposition
(i j) we say that we have collected the coupons i and j. Thus the set of coupons is
{1, . . . , n}. A standard argument shows that at time t = (1 − ε)(1/2)n log n for any
m ∈ N, the probability that we are missing at least m coupons is asymptotically one.

Recall that
Xt = τ1 ◦ · · · ◦ τNt .

Then if the coupon i has not been collected then none of the transpositions τ1, . . . , τNt

have affected i. This implies that i is a fixed point of Xt. Thus we see that for any m ∈ N

lim
n→∞

P(Xt has at least m fixed points) = 1.

On the other hand it is a well known fact that the probability a uniformly random
permutation has exactly ` fixed points is asymptotically e−1/`!. Let Am ⊂ Sn be the set
of permutations with at least m fixed points. Then from the definition given in (1.11) we
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have that for any m ∈ N

lim inf
n→∞

dTV ((1− ε)(1/2)n log n) ≥ lim inf
n→∞

[P(Xt ∈ Am)− µ(Am)] = 1−
∞∑
`=m

e−1

`!
.

The proof follows as m ∈ N can be taken arbitrarily large.

The main work in showing Theorem 1.2.2 lies in proving the statement limn→∞ dTV ((1+

ε)tmix) = 0. The original proof of this in the case of transpositions by Diaconis and
Shahshahani [21] makes use of representation theory to obtain bounds on so-called char-
acter ratios. The estimates on character ratios become harder as |Γ| increases (unless
|Γ| > n/2). A step towards the general case in Theorem 1.2.2 was then made in Beresty-
cki, Schramm, and Zeitouni [12] where the authors use probabilistic methods to show
Theorem 1.2.2 in the special case when the conjugacy class Γ is the set of k-cycles with
k fixed. Their argument is divided into two parts: in the first part they deal with cycles
of small length and in the second part they introduce a coupling to deal with cycles of
large length.

We take a conceptually different approach; we bound the total variation distance using
a notion of curvature, the so-called coarse Ricci curvature, on Sn. We make use of the
coupling in Berestycki, Schramm, and Zeitouni [12] and a result of Schramm [47] to prove
bounds on the coarse Ricci curvature. Crucially, our argument enables us to ignore the
cycles of small length. This turns out to be a significant advantage as the treatment of
the small cycles in [12] is rather delicate.

For the remainder of the introduction we consider the case of random transpositions
only as the ideas are cleaner to present in the simpler setting of transposition. We will
show that for each ε > 0,

dTV ((1 + ε) (1/2)n log n)→ 0 as n→∞ (1.13)

by using a notion of Ricci curvature on graphs. We will introduce this notion of Ricci
curvature and prove (1.13) in Section 1.2.3. In the next section we briefly recall the
notion of Ricci curvature on manifolds.

1.2.2 Ricci Curvature on Manifolds

The notion of curvature, in particular Ricci curvature, plays an important role in analysis
on manifolds. We introduce the notion of Ricci curvature in the spirit of Renesse and
Sturm [40]. For this we first define a notion of distance between two measures on a metric
space.
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Figure 1.4: On the left is the two dimensional sphere which has positive Ricci curvature. On
the right is a saddle like space which has negative Ricci curvature.

Definition 1.2.4 (L1-Kantorovitch distance). The L1-Kantorovitch distance W1(π, ν)

between two measures π and ν defined on a metric space (E, d) is given by

W1(π, ν) = inf
X∼π,Y∼ν

E[d(X, Y )]

where the infimum is taken over all couplings of random variables X and Y distributed π
and ν respectively.

Remark 1.2.5. Using duality we can also write

W1(π, ν) = sup{
∫
f dπ −

∫
f dν : f is Lipschitz with Lipschitz constant 1}. (1.14)

Now let (M, g) be an N -dimensional manifold and consider the intrinsic metric (in the
metric space sense) d onM . Let x ∈M be a point on the manifold and let v be a tangent
vector at x. Let y ∈M be a point which lies in the direction of v from x. Let mx and my

be two uniform probability measures over the spheres S(x, δ) = {z ∈ M : d(x, z) = δ}
and S(y, δ) = {z ∈M : d(y, z) = δ} respectively. The Ricci curvature Ricx(v) at x in the
direction of v can be defined by (see Ollivier [37, Corollary 10])

1− W1(mx,my)

d(x, y)
=

δ2

2N
Ricx(v) +O(δ3 + d(x, y)δ2). (1.15)

Positive Ricci curvature is described in Ollivier [37] as when “small spheres are closer
(in transportation distance) than their centers are”. We give an example of spaces with
positive and negative Ricci curvature in Figure 1.4.

A lower bound on Ricci curvature gives a lot of information on the structure of the
manifold such as bounds on the spectral gap, volume growth and the growth of the
fundamental group (see Wei [55]).

Ricci curvature is defined using the tangent space and so it is not obvious how to



17 17

x y yx

−1

−1

−1

0 1

2

2

2

Figure 1.5: Example of coarse Ricci curvature on graphs with mx uniformly distributed on the
neighbours of x. On the left is a graph with κ(x, y) = 2/3. The optimal coupling is indicated
with matching shapes. On the right is a graph with κ(x, y) = −1. The values of the optimal
function in (1.14) is given by the numbers.

define a similar notion on a general metric space. In Lott and Villani [35], Sturm [52] and
Sturm [53] a property called displacement convexity is used as the basis for the notion
of Ricci curvature in certain metric spaces. However this notion is rather difficult to
work with on graphs, even for the simple case of the hypercube (see Ollivier and Villani
[38]). Instead we will work with coarse Ricci curvature defined in Ollivier [37] which we
introduce in the following section.

1.2.3 Coarse Ricci Curvature

Let us now introduce the notion of coarse Ricci curvature as given by Ollivier [37]. For
now we assume that (E, d) is a general metric space but we will later be interested in the
case when E is a graph with graph distance d.

Previously in (1.15) we tookmx andmy to be uniform probability measures on spheres
around x and y respectively. Here we do not make this assumption; instead we consider
the triple (E, d, {mx}x∈E) where {mx}x∈E is a given set of probability measures.

Definition 1.2.6 (Coarse Ricci curvature). The coarse Ricci curvature of the triple
(E, d, {mx}x∈E) between two points x, y ∈ E with x 6= y is given by

κ(x, y) := 1− W1(mx,my)

d(x, y)
. (1.16)

The coarse Ricci curvature κ of the triple (E, d, {mx}x∈E) is given by

κ := inf
x 6=y

κ(x, y).

We give an example of graphs with positive and negative coarse Ricci curvature in
Figure 1.5. Compare this to Figure 1.4.

To make the connection to the random walk on Sn we take E = Sn. The distance
d(σ, σ′) between two elements σ, σ′ ∈ Sn is given by the minimum number of transposi-
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tions one must apply to σ in order to obtain σ′. We take the measure mx to be the law
of a transposition random walk Xx

t started at x and ran for time t = cn/2. Note that
mx depends on t = cn/2 and hence κ depends on both n and c > 0. We suppress the
dependence on n and write κc for the coarse Ricci curvature of (Sn, d, {mx}x∈Sn).

Theorem 1.2.7. If c ≤ 1,
lim
n→∞

κc = 0.

On the other hand, for c > 1

lim inf
n→∞

κc ≥ θ(c)4 > 0 (1.17)

where θ(c) is the solution in (0, 1) to the equation

θ(c) = 1− e−cθ(c). (1.18)

Let us first make some basic observations about κc for finite n. If we apply the same
transpositions to a random walk started at x and a random walk started at y, this keeps
their distance constant and hence κc ≥ 0. In fact one can show also that κc > 0 for every
finite n. However in the limit as n → ∞, it is the case that κc → 0 when c ≤ 1 and κc
remains bounded away from 0 when c > 1.

In turns out that in order to compute the value of κc it is not necessary to compute
κc(x, y) for all x, y ∈ Sn.

In addition we show in Chapter 3 that lim supn→∞ κc ≤ θ(c)2 for c > 1 and propose
the following conjecture.

Conjecture 1.2.8. We have that for c ≥ 0,

lim
n→∞

κc = θ(c)2

with the convention that θ(c) = 0 for c ≤ 1.

An important consequence of (1.17) is that it allows us to obtain bounds on dTV

and hence derive the mixing time of the transposition random walk, as seen in the next
proposition.

Proposition 1.2.9. For any s ≥ 0 we have that

dTV (scn/2) = sup
x∈Sn
‖m∗sx − µ‖TV ≤ diam(Sn)(1− κc)s

where diam(Sn) = supx,y∈Sn d(x, y) = n− 1.
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Note that this proposition holds more generally and follows from Ollivier [37, Corollary
21]. Proposition 1.2.9 is in fact a statement about the L1-Kantorovitch distance bounding
the total variation distance. Stated in this form it has been observed before under the
name path coupling by Bubley and Dyer [16] and Jerrum [31] (see also Levin, Peres, and
Wilmer [34, Chapter 14]).

Next we present the proof of the correct mixing time for the transposition walk using
Theorem 1.2.7.

Proof of Theorem 1.2.2 in the case of transpositions. Recall that it remains to show (1.13):
for each ε > 0,

lim
n→∞

dTV ((1 + ε)tmix) = 0.

Fix ε > 0 and let c > 1 be arbitrary. Let s = (1 + ε) log n/c so that scn/2 = (1 + ε)tmix.
Then using Proposition 1.2.9 and Theorem 1.2.7 we have that

lim sup
n→∞

dTV ((1 + ε)tmix) ≤ lim
n→∞

n(1− θ(c)4)s = lim
n→∞

n1+(1+ε)
log(1−θ(c)4)

c . (1.19)

Now we claim that we can choose c > 1 suitably large so that the right hand side of the
above equation is zero. Indeed an easy computation using l’Hopital’s rule with (1.18)
shows that

lim
c↑∞

log(1− θ(c)4)

c
= −1.

Hence it follows that for c > 1 sufficiently large the right hand side of (1.19) is zero.

Throughout the rest of the introduction we will investigate why Theorem 1.2.7 holds.
It turns out that the lengths of the cycles of Xt at time t = cn/2 play an important part
in the proof of Theorem 1.2.7. In the next section we study the cycle lengths of Xt.

1.2.4 A Result of Oded Schramm Concerning Cycle Lengths

In this section we will explain a result of Schramm [47] which shows the asymptotic
distribution of the cycle lengths of Xt for t = cn/2.

First we associate to X a certain random graph process G = (Gt : t ≥ 0) defined as
follows. For each t ≥ 0, Gt is a graph on {1, . . . , n} and initially G0 contains no edges.
Suppose that X makes a jump at time t and Xt = Xt− ◦ τ where τ = (i j) is a uniform
transposition. There are two cases, either the edge {i, j} is present in Gt−1 in which case
we set Gt = Gt−1 or the edge {i, j} is not present in Gt−1 in which case we set Gt to be
Gt−1 together with the edge {i, j}.

Hence for each t ≥ 0 any given edge is present independently with probability pt given
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(a) c < 1 (b) c = 1 (c) c > 1

Figure 1.6: The three phases of an Erdős-Renyi graph. The largest component is highlighted
in red.

by

pt = 1− exp

{
− t(

n
2

)} . (1.20)

The graph Gt is what is referred to as an Erdős-Renyi graph G(n, pt) which has been the
focal point of much research in the last 60 years and thus is well understood. First we
present a theorem about the largest component of Gt (see also Figure 1.6).

Theorem 1.2.10 (Erdős and Rényi [25]). Suppose that t = cn/2 for some c > 0 and for
i ≥ 1 let |Li(Gt)| denote the i-th largest component of Gt. Then

Regime Component sizes

c < 1 |L1(Gt)| ∼ 3
(1−c)2 log n

c = 1 |L1(Gt)| = O(n2/3), |L2(Gt)| = O(n2/3),. . .

c > 1 |L1(Gt)| ∼ θ(c)n

|L2(Gt)| = O(log n)

Here, θ(c) is the unique solution in (0, 1) to the equation (1.18).

Here, by F (n) ∼ G(n) we mean that F (n)/G(n) → 1 in probability as n → ∞. In
the case when c = 1, the ratio of the largest component to n2/3 converges to a non-trivial
limit which is described in Aldous [3].

Recall that each transposition that has been applied to X prior to time t is an edge
of Gt. Thus we see that every cycle is contained in a component of Gt in the sense that
if i, j are in the same cycle of Xt then they are in the same component of Gt (see Figure
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Figure 1.7: The graph Gt associated with Xt = (1 2 5)(3 4)(6 7).

1.7). Let t = cn/2. Using Theorem 1.2.10 we can immediately deduce that for c < 1,
every cycle of Xt has length O(log n) since the length of the longest cycle is less than
the size of the largest component of Gt. Similarly, every cycle of Xt has length O(n2/3)

when c = 1. In the case when c > 1, Schramm [47] shows that there are cycles of length
comparable to n with high probability (a different proof for the general case also appears
in Berestycki [11]). Note that this does not immediately follow from the behaviour of Gt,
since the giant component of Gt may be made up of many small cycles.

Schramm was also able to identify the limiting distribution as n → ∞ of the renor-
malised cycle lengths. To present this result we first introduce some necessary nota-
tion. For a permutation σ ∈ Sn let x = (x1, . . . , x`), ` ≤ n, be the lengths of the
cycles of σ, written in decreasing order. Define X(σ) = x/n = (x1/n, . . . , x`/n, 0, . . . )

to be the renormalised cycle lengths where we trail at the end by zeros. For example if
σ = (1 4 5)(2 3)(6), then X(σ) = (1/2, 1/3, 1/6, 0, . . . ). We see that X(σ) is an element
of the set

Ω∞ := {(x1 ≥ x2 ≥ . . . ) : xi ≥ 0 for each i ∈ N and
∞∑
i=1

xi = 1}.

Suppose again that t = cn/2, then we have seen earlier that the cycles of Xt have
length O(n2/3) when c ≤ 1. It it follows that when c ≤ 1, for every i ∈ N, Xi(Xt)→ 0 in
probability as n→∞. The following theorem deals with the case when c > 1.

Theorem 1.2.11 (Schramm [47, Theorem 1.1]). Let c > 1, t = cn/2 and let θ(c) be the
unique solution in (0, 1) to the equation (1.18). Then we have that for each m ∈ N,(

X1(Xt)

θ(c)
, . . . ,

Xm(Xt)

θ(c)

)
→ (Z1, . . . , Zm)

in distribution as n→∞ where Z = (Z1, Z2, . . . ) is a Poisson–Dirichlet random variable,
which we define below.

The law of Z can be derived using the so-called stick breaking construction. Let
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U1, U2, . . . be i.i.d. uniform random variables on [0, 1]. Let Z∗1 = U1 and recursively for
k ≥ 2

Z∗k =

(
1−

k−1∑
i=1

Z∗i

)
Ui.

Definition 1.2.12 (Poisson–Drichlet distribution). A Poisson–Dirichlet random variable
Z is the vector (Z∗1 , Z

∗
2 , . . . ) ordered in decreasing size.

In the next section we use Theorem 1.2.11 to give a sketch proof of Theorem 1.2.7.

1.2.5 Sketch Proof of the Curvature Theorem

In this section we give a sketch proof of Theorem 1.2.7 for the case when c > 1 (see
Chapter 3 for a full proof). In fact we will only outline a partial proof: we will show that
for c > 1

lim inf
n→∞

inf
x,y
κc(x, y) ≥ θ(c)4 (1.21)

where the infimum is taken over all x, y ∈ Sn with even distance.
Fix c > 1 and henceforth let t = cn/2. Writing out the definition of κc(x, y), we wish

to show
lim sup
n→∞

sup
x,y

E[d(Xx
t , X

y
t )]

d(x, y)
≤ 1− θ(c)4

for some appropriate coupling between Xx and Xy, where the supremum is taken over
all x, y with even distance. We make several reductions: first, by vertex transitivity we
can assume that x = id. Also, by the triangle inequality (since W1 is a distance), we can
assume that y = (i j) ◦ (`m) is the product of two distinct transpositions. There are two
cases to consider: either the supports of the transpositions are disjoint, or they overlap
on one vertex. We will focus here on the first case where the support of the transpositions
are disjoint; that is, i, j, l,m are pairwise distinct. The other case is dealt with similarly.

Let t = cn/2. Clearly by symmetry Ed(X id
t , X

(i,j)◦(`,m)
t ) is independent of i, j, ` andm,

so long as they are pairwise distinct. Hence it is also equal to Ed(X id
t , X

τ1◦τ2
t ) conditioned

on the event A that τ1, τ2 having disjoint support, where τ1 and τ2 are independent uniform
random transpositions. This event has an overwhelming probability for large n, thus it
suffices to construct a coupling between X id and Xτ1◦τ2 such that

lim sup
n→∞

Ed(X id
cn/2, X

τ1◦τ2
cn/2 ) ≤ 2(1− θ(c)4). (1.22)

Indeed, it then immediately follows that the same is true with the expectation replaced
by the conditional expectation given A.
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u v u v

Figure 1.8: The transition of the split–merger walk. On the left is when two pieces coagulate
and on the right is when two pieces fragment.

Now we sketch a coupling between X id
t and Xτ1◦τ2

t which gives the correct bound in
(1.22). Although we do not show this here, an important property of our coupling will
be that

E[d(X id
t , X

τ1◦τ2
t )] ≈ 2(1− P(X id

t = Xτ1◦τ2
t )). (1.23)

Now we sketch the coupling which gives lim infn→∞ P(X id
t = Xτ1◦τ2

t ) ≥ θ(c)4. Observe the
following: given X(X id

t ) = x̄ and X(Xτ1◦τ2
t ) = x̄′, the random variables X id

t and Xτ1◦τ2
t

are distributed uniformly on {σ : X(σ) = x̄} and {σ : X(σ) = x̄′} respectively. Hence it
suffices to show that P(X(X id

t ) = X(Xτ1◦τ2
t )) ≥ θ(c)4 for large n.

To ease notation, for s ≥ 0, define X̄s = X(X id
s ) and Ȳs = X(Xτ1◦τ2

s ). Let us describe
the evolution of X̄ which is a random walk on Ω∞, see also Figure 1.8. Suppose that X̄
makes a jump at time s ≥ 0 and X̄s− = x̄ = (x1, x2, . . . ). We pick u ∈ {1/n, . . . , n/n}
uniformly and conditionally on u pick v ∈ {1/n, . . . , n/n}\{u} uniformly at random.
Now imagine the interval (0, 1] tiled using the intervals (0, x1], (0, x2], . . . (the specific
tiling rule does not matter). If u and v fall within different tiles, say corresponding to the
intervals (0, xi] and (0, xj], then we merge the intervals (0, xi] and (0, xj] into one, and
let X(Xt) be the ordering of this in decreasing order. Otherwise if u and v fall within the
same tile, say corresponding to the interval (0, xi], then we split (0, xi] into two intervals.
Without loss of generality assume that u < v, then the split will result in one interval of
length v− u and the other of length xi − (v− u). Again we let X̄s be the element of Ω∞

resulting by ordering in decreasing order.
Fix δ > 0 and set t0 = t − δ−5. Let τ3, τ4, . . . be a sequence of i.i.d. uniform

transpositions and let N = (Ns : s ≥ 0) be a rate 1 Poisson process. Then we define the
coupling during the interval [0, t0] by defining

X̄t0 = X(τ1 ◦ · · · ◦ τNt0 )

Ȳt0 = X(τ1 ◦ · · · ◦ τNt0 ◦ τNt0+2)

so that Ȳt0 = X̄t0+2.
For s ∈ [t0, t] we create a matching between X̄s and Ȳs by matching an entry of X̄s to

exactly one entry of Ȳs of the same size. Using the fact that Ȳt0 = X̄t0+2, one can check
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that at time t0 there are either 6, 4 or 0 unmatched entries. During the time interval
(t0, t] we will match the unmatched entries so that at time t there are no more unmatched
entries and thus X̄t = Ȳt.

We do not present the coupling for the time interval (t0, t] but note that it has the
following properties:

(i) the number of unmatched entries cannot increase at any time,

(ii) the number of unmatched entries is either 6, 4 or 0,

(iii) the processes X̄ and Ȳ have the same jump times,

(iv) at every jump, the size of the unmatched entry decreases by at most a factor of 2,

(v) at every jump, the probability of decreasing the number of unmatched entries is at
least (x1x2)2 where x1 and x2 are the smallest and the second smallest unmatched
entries respectively.

Now consider the size Vs of the smallest unmatched entry at time s ∈ [t0, t]. Suppose
that Vs ≥ δ for every s ∈ [t0, t]. Then each time both X̄ and Ȳ jump, the probability
that we decrease the number of unmatched entries bounded below by δ4. The number
jumps are governed by a rate 1 Poisson processes and with high probability, there will
jump at least (t− t0)/2 = δ−3/2 many times during the interval [t0, t]. Thus

P(X̄t 6= X̄ ′t|{Vs ≥ δ ∀s ∈ [t0, t]}) ≤ (1− δ2)δ
−3/2 = O(δ).

Therefore using (1.23) we have that

lim
n→∞

E[d(X id
t , X

τ1◦τ2
t )] ≈ 2(1− lim

n→∞
P(Vs ≥ δ for all s ∈ [t0, t])−O(δ)). (1.24)

Now we estimate the probability on the right hand side of (1.24). We first estimate
P(Vt0 >

√
δ). Recall that Ȳt0 = X̄t0+2 and let (u, v) and (u′, v′) be the pairs of markers

used to obtain X̄t0+1 from X̄t0 and X̄t0+2 from X̄t0+1 respectively. Let A1(m) be the event
that the markers (u, v) fall within the entries X̄1(t0), . . . , X̄m(t0). Similarly let A2(m) be
the event that the markers (u′, v′) fall within the entries X̄1(t0 +1), . . . , X̄m(t0 +1). Then
a simple argument using Theorem 1.2.11 shows that

lim
m→∞

lim
n→∞

P(A1(m) ∩ A2(m)) = θ(c)4.

Using Theorem 1.2.11 once more it follows that

P(V0 >
√
δ|A1(m) ∩ A2(m)) = 1−O(δ).
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Hence we obtain that

lim
n→∞

P(V0 >
√
δ) = θ(c)4(1−O(δ)) = θ(c)4 −O(δ). (1.25)

Using Theorem 1.2.11 and a union bound, one can show that with probability 1 −
O(δ4), for every s ∈ [t0, t], both X̄s and Ȳs will contain an entry of size at least δ1/4. A
key idea is the following: suppose an unmatched entry has size in the interval (δ, δ1/4),
then it follows that the unmatched entry is much more likely to merge with an entry of
size at least δ1/4 than it is to fragment. Moreover if it does fragment, then the size of the
unmatched entry decreases at most by a factor of 2. From this and a birth-death chain
argument it follows that

P(Vs ≤ δ ∀s ∈ [t0, t]|Vt0 >
√
δ) = O(δ).

Combining this with (1.25) and (1.24) gives

lim
n→∞

E[d(X id
t , X

τ1◦τ2
t )] ≈ 1− θ(c)4 −O(δ).

As δ > 0 is arbitrary we obtain (1.22).



CHAPTER 2
Scaling Limits of Coalescent Processes

Near Time Zero

Batı Şengül

2.1 Introduction

2.1.1 Statement of the main results

A coalescent process is a particle system in which particles merge into blocks. Coalescent
processes have found a variety of applications in physics, chemistry and most notably in
genetics where the coalescent process models ancestral relationships as time runs back-
wards. The work on coalescent theory dates back to the seminal paper of Kingman [33]
where Kingman considered coalescent processes with pairwise mergers. In Pitman [39],
Sagitov [46] and Donnelly and Kurtz [22] this was extended to the case where multi-
ple mergers are allowed to happen. We refer to Berestycki [10] and Bertoin [14] for an
overview of the field.

In this paper we shall consider Λ-coalescents where Λ is a finite strongly regularly
varying measure with index 1 < α ≤ 2, see (2.2). These coalescents encompass a large
variety of well known examples such as beta coalescents and Kingman’s coalescent. Fur-
ther, these coalescents have the property that they come down from infinity, that is, when
starting with infinitely many particles, the process has finitely many blocks for any time
t > 0. Our goal is to gain precise information about the behaviour near time zero.

One central insight of this work is that the correct framework for taking such scaling
limits is to view coalescent processes as geometric objects. What follows is an outline of
our approach. To any coalescent process Π = (Π(t) : t ≥ 0), one can associate a certain

26
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ultra-metric space (E, δ) which completely characterises the process Π. This was first
suggested in the work of Evans [26], who introduced this object in the case of Kingman’s
coalescent and studied some of its properties.

The construction is simple and we describe it now. Let Π = (Π(t) : t ≥ 0) be a
coalescent process and define an ultra-metric on N by

δ(i, j) := inf{t > 0 : i
Π(t)∼ j} (2.1)

where i
Π(t)∼ j if and only if i, j are in the same block of Π(t). The metric space (E, δ) is

then the completion of (N, δ).
Notice that δ(i, j) gives the time for the most recent common ancestor of i and j.

Moreover it is not hard to check that (E, δ) is compact if and only if the coalescent
process Π comes down from infinity, that is for all t > 0, Π(t) has finitely many (non-
empty) blocks. We call the space (E, δ) the Evans space associated to the coalescent
Π.

Let Λ be a finite measure on [0, 1]. We say that Λ is SRV(α) if Λ is strongly regularly
varying with index α ∈ (1, 2). That is when Λ(dp) = f(p) dp and there exists a constant
AΛ > 0 such that

f(p) ∼ AΛp
1−α p→ 0 (2.2)

where the above notation means the quotient of both sides approaches 1. We will abuse
notation slightly and say that Λ is SRV(2) when Λ = δ{0}. It is possible to associate with
each finite Λ on [0, 1] a coalescent process called the Λ-coalescent and the case when Λ

is SRV(2), the Λ-coalescent is Kingman’s coalescent. Note that if Λ is a finite SRV(α),
then the Λ-coalescent comes down from infinity if and only if α ∈ (1, 2].

Finite SRV(α) measures encompass a large variety of measures. A prominent exam-
ple is the Beta(2− α, α) distribution which has density B(2− α, α)−1p1−α(1− p)α−1 dp,
where B(x, y) is the beta function. This is a one parameter family which interpolates
between the uniform measure (α = 1) and δ0 (α → 2) for which the corresponding coa-
lescents are the Bolthausen-Sznitman coalescent and Kingman’s coalescent respectively.
The importance of the SRV(α) condition stems primarily from population genetics where
the models correspond to populations in which there is large variability in the offspring
distribution, see Berestycki [10][Section 3.2].

The first theorem of the paper presented below shows convergence of the metric spaces
that correspond to the coalescent processes as in (2.1). Let us briefly discuss the pointed
Gromov-Hausdorff topology which we use as our notion of convergence (see Section 2.2 for
the details). A pointed metric space (S, d, p) is called proper is every closed ball is compact
and Polish if it is complete and seperable. A sequence of proper Polish pointed metric
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spaces (Sn, dn, pn) converges to a proper Polish pointed metric space (S, d, p) under the
pointed Gromov-Hausdorff topology if for every r > 0, the closed ball of radius r around
pn ∈ Sn converges in the usual Gromov-Hausdorff sense to the closed ball of radius r
around p ∈ S. The space of all proper Polish pointed metric spaces can be equipped
with a metric, called the pointed Gromov-Hausdorff metric, which is compatible with
the notion of convergence described and further this space is itself a Polish space when
equipped with the pointed Gromov-Hausdorff metric.

Theorem 2.1.1. Let Λ be a finite measure satisfying (2.2) for some α ∈ (1, 2] and (E, δ)

be the Evans space associated to the corresponding Λ coalescent via (2.1). Then for all
i ∈ N, there exists a random pointed ultra-metric space (S, dS, o), which is independent of
i, such that

(E, ε−1δ(·, ·), i)→ (S, dS, o)

weakly under the pointed Gromov-Hausdorff metric as ε→ 0.

The limiting spaces in the theorem depend on the value of α ∈ (1, 2] and AΛ. We will
denote them by (S(α), d

(α)
S , o(α)) if there is a risk of confusion.

Geometrically, the space (S, dS, o) in Theorem 2.1.1 is referred to as tangent cone of
(E, δ) at the point i. More precisely a tangent cone of a metric space (X, d) at a point
x ∈ X is given by the pointed Gromov-Hausdorff limit of (X, r−1

i d, x) as i → ∞ where
{ri}i≥1 is some sequence such that ri ↓ 0. Tangent cones are generalisations of tangent
spaces on manifolds. Indeed, on a Riemannian manifold the tangent cone at any point
exists and is isometric to the tangent space. Tangent cones have appeared in a variety
of contexts ranging from geometric measure theory Simon [51] to a recent paper Curien
and Le Gall [19] in which the tangent cones of the Brownian map are identified as the
Brownian plane. In our case, tangent cones are the correct objects for describing the
scaling limits as they allow us to forget about the mass and ordering imposed on the
coalescent.

In Hughes [30] the author identifies a homeomorphism between the space of ultra-
metric spaces and the space of real trees both equipped with the Gromov-Hausdorff
metric. Consequently Theorem 2.1.1 can be stated in terms of the real trees that corre-
spond to the coalescents. The tangent cones are only of interest at the leaves of a real
tree as they can be easily identified at any other point as follows. If (T, d) is a coalescent
tree and x ∈ T such that T\{x} has exactly two connected components then the tangent
cone limr↓0(T, r−1d, x) exists and is isometric to R with the Euclidian distance. If T\{x}
has k ≥ 3 components then the tangent cone around x exists and is isometric to k disjoint
copies of [0,∞) glued together at the point 0, equipped with the intrinsic metric.

The next result (which is both a crucial step in the proof of Theorem 2.1.1, and of
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1

ε

(1− r)ε
i1 i2 i3 i4 i5

Figure 2.1: Picture illustrating the process Zε. The red sub-tree represents the blocks of the
coalescent process which eventually merge to form Π1(ε). Here Zε(r) = 5.

independent interest) provides a description of the mergers of the block containing 1 at
small times. This description will allow us to depict the space (S, dS). Loosely speaking,
this result should be interpreted as a local limit of the coalescent tree, whereas Theorem
2.1.1 deals with global scaling limits. More precisely for ε > 0 and r ∈ [0, 1) let Zε(r) be
the number of blocks of Π((1− r)ε) that make up Π1(ε), the block containing 1 at time
ε (see also Figure 2.1). Thus there exists 1 = i1 < · · · < iZε(r) such that

Π1(ε) = Πi1((1− r)ε) ∪ · · · ∪ ΠiZε(r)
((1− r)ε).

Henceforth we shall be considering the càdlàg modification of the process Zε.

Theorem 2.1.2. For α ∈ (1, 2] and Λ a finite SRV(α) measure let Zε be the process
constructed above using a Λ-coalescent. Then as ε→ 0, Zε → Z in the Skorokhod sense
on [0, 1). The process Z is an inhomogeneous Markov process with generator

Lrf(i) = AΛ

∑
j≥1

(i+ j)
Γ(2− α)Γ(j − α + 1)

(1− r)αΓ(j + 2)
[f(i+ j)− f(i)]

when α ∈ (1, 2) and

Lrf(i) =
(i+ 1)

1− r [f(i+ 1)− f(i)]

when α = 2.

We will now depict how the closed unit ball B(o, 1) ⊂ (S, dS) is constructed. First
construct a tree T from a branching process. Start the tree with one particle which does
not die and is hence referred to as an immortal particle. The immortal particle produces
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j ≥ 1 offspring at time r ∈ [0, 1) with rate (j + 1)q
(r)
j+1 where

q
(r)
j+1 =

Γ(2− α)Γ(j − α + 1)

(1− r)αΓ(j + 2)
.

For j ≥ 1, the other particles at time r ∈ [0, 1) die and are replaced by j + 1 offspring at
rate q(r)

j+1. Thus for each r ∈ [0, 1), the number of particles which are at distance r from
the root is distributed Z(r). The process Z(r) explodes as r → 1 so we have infinitely
many particles at distance one from the root. The space B(o, 1) is the set of particles
at distance one from the root and o is the immortal particle that is distance one from
the root. For each v, w ∈ B(o, 1) there exists two unique paths from the root ending at
the points v, w and these paths deviate at distance hv,w ≥ 0 from the root. The distance
between two points is given by dS(v, w) = 1 − hv,w. The multi-type branching process
described is the spine decomposition of an inhomogeneous Galton-Watson process for
which each particle at time r ∈ [0, 1) dies gives rise to j + 1 offspring at rate q(r)

j+1 as
introduced in Chauvin and Rouault [18].

In the case α = 2 we are able to strengthen the convergence in Theorem 2.1.1 to that
of metric measure spaces and explicitly construct the limiting space (see Figure 2.2). To
that end construct a measure ν on the space (E, δ) as follows. Let ν be such that the mass
it assigns to each closed ball B(i, t) of radius t > 0 around i is equal to the asymptotic
frequency of the block of Π(t) containing i. This extends uniquely to a measure on the
whole space by Carathéodory’s extension theorem. Our next result shows the tangent
cones of the metric space (E, δ) equipped with the measure ν.

Theorem 2.1.3. In the case when α = 2 in Theorem 2.1.1, there exists a locally finite
measure µ on the space (S, dS) such that for all i ∈ N,

(E, ε−1δ(·, ·), 4ε−1ν, i)→ (S, dS, µ, o)

weakly as ε→ 0 under the Gromov-Hausdorff-Prokhorov topology.
The limiting metric measure space (S, dS, µ, o) is independent from i and can be con-

structed as follows. Let W = (W (t) : t ∈ R) be a two-sided Brownian motion on R and
let N := {t ∈ R : W (t) = 0}. For each x, y ∈ N with x ≤ y, define the pseudo-metric

dS(x, y) := sup{W (t) : t ∈ [x, y]} ∨ 0. (2.3)

and S = N / ∼ where x ∼ y if and only if dS(x, y) = 0 and o = 0. The measure µ is the
projection of the local time measure on N .

We delay the exact definition of the Gromov-Hausdorff-Prokhorov metric to Section
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x y z

d(y, z)

d(x, y)

Figure 2.2: Construction of the space (S(2), d
(2)
S , o(2)) from a two-sided Brownian motion.

2.2.
Note that Theorem 2.1.2 in the case α = 2 can be obtained from Theorem 2.1.3

through some routine computations. To illustrate the usefulness of the results in the case
α = 2 we present the following corollary. This is an immediate consequence of Theorem
2.1.3.

Corollary 2.1.4. Let F (t) be the asymptotic frequency of the block containing 1 in King-
man’s coalescent at time t ≥ 0. Then we have in the sense of weak convergence on the
Skorokhod space

(ε−1F (εt) : t ≥ 0)→ (X(t) : t ≥ 0)

as ε→ 0.
The process X = (X(t) : t ≥ 0) is characterised by the following.

(i) X(0) = 0 and for t > 0, X(t) is the sum of two i.i.d. exponential distributions
with parameter 1/(2t)

(ii) X is an inhomogeneous compound Poisson process where at time t > 0 the rate
of jumps is given by 2/t and the jump distribution is exponential with parameter
1/(2t).

Note that Corollary 2.1.4 extends Berestycki and Berestycki [7][Corollary 1.3] which
shows the above convergence for fixed t ≥ 0.

2.1.2 Outline of the Paper

In Section 2.2 we introduce some background on metric geometry. We assume the reader
is familiar with the basic concepts in coalescent theory and excursion theory. We refer to
Berestycki [10], Bertoin [14] and Revuz and Yor [41]. In Section 2.3.1 we prove Theorem
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2.1.2 for α ∈ (1, 2) and explain the changes needed for the case α = 2. Then in Section
2.3.2 we prove Theorem 2.1.1. In Section 2.4 we shall prove Theorem 2.1.3.
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2.2 Convergence of Metric Spaces

In this section we briefly review some basic notions of convergence of metric spaces. For
a detailed treatment of the material refer to Burago, Burago, and Ivanov [17].

Here we introduce the Gromov-Hausdorff metric used in Theorem 2.1.1 and the
Gromov-Hausdorff-Prokhorov metric in Theorem 2.1.3. We start by defining a met-
ric on certain metric spaces without measures, called the Gromov-Hausdorff metric.
We introduce this by first defining the Gromov-Hausdorff metric on compact metric
spaces. Consider two compact metric spaces (X, dX) and (Y, dY ). The compact Gromov-
Hausdorff distance dcGH((X, dX), (Y, dY )) is constructed as follows. Let (Z, dZ) be a
metric space such that there exists isometric embeddings φX : (X, dX) → (Z, dZ),
φY : (Y, dY )→ (Z, dZ), then

dcGH((X, dX), (Y, dY )) := inf{dZH(φX(X), φY (Y ))} (2.4)

where the infimum is over all metric spaces (Z, dZ) with the above property and

dZH(A,B) := inf{ε > 0 : B ⊂ {z ∈ Z : distdZ (z, A) < ε} and A ⊂ {z ∈ Z : distdZ (z,B) < ε}}

is the Hausdorff distance in (Z, dZ). In particular, dcGH((X, dX), (Y, dY )) = 0 if and only
if (X, dX) and (Y, dY ) are isometric.

Now we define the Gromov-Hausdorff-Prokhorov metric on compact spaces. Suppose
in addition we have two finite measures µ and ν defined on the spaces (X, dX) and
(Y, dY ) respectively. Again let (Z, dZ) be a metric space such that there exist isometric
embeddings φX : (X, dX) → (Z, dZ), φY : (Y, dY ) → (Z, dZ). Then µ∗ = µ ◦ φ−1

X and
ν∗ = ν ◦φ−1

Y are measures on the space (Z, dZ). The Prokhorov metric on (Z, dZ) is given
by

dZPr(µ
∗, ν∗) := inf{ε > 0 : µ∗(A) ≤ ν∗(Aε) + ε and ν∗(A) ≤ µ∗(Aε) + ε ∀ measurable A}
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where Aε := {z ∈ Z : distdZ (z, A) < ε}. Then the compact Gromov-Hausdorff-Prokhorov
distance is given by

dcGHP ((X, dX , µ), (Y, dY , ν)) = inf{dZH(φX(X), φY (Y )) + dZPr(µ
∗, ν∗)}

where the infimum is over all metric spaces (Z, dZ) with the above property.
In this paper we work with non-compact spaces and there are several ways to extend

the definition above to a certain class of non-compact metric spaces. We now introduce
our notion of the Gromov-Hausdorff and Gromov-Hausdorff-Prokhorov distance on non-
compact metric spaces satisfying certain properties. Suppose that (X, dX , µ, pX) and
(Y, dY , ν, pY ) are proper Polish pointed metric spaces, that is they are complete, separable
and every closed ball is compact. Then the (pointed) Gromov-Hausdorff distance is given
by

dGH((X, dX , pX), (Y, dY , pY )) =
∑
n≥1

2−n(1 ∧ dcGH((B(pX , n), dX), (B(pY , n), dY )))

where here and throughout B(p, r) denotes the closed ball of radius r around p.
Denote by (X , dGH) the space of proper Polish spaces with a distinguished point, up

to isometry, equipped with the Gromov-Hausdorff metric. The space (X , dGH) is a Polish
space (see Evans [27]). Some of the properties of metric spaces are preserved under dGH
convergence. One such example is when the metric is an ultra-metric. A metric d is
called an ultra-metric if

d(x, y) ≤ d(x, y) ∨ d(y, z) ∀x, y, z.

It is not hard to check all the metric spaces in this paper are in fact ultra-metric spaces
and that this property is preserved under dGH convergence.

Suppose that (X, dX , µ, pX) and (Y, dY , ν, pY ) are proper Polish pointed metric spaces
which come equipped with two measures µ and ν respectively. Suppose further that both
measures are finite on compact sets. Then the (pointed) Gromov-Hausdorff-Prokhorov
distance is given by

dGHP ((X, dX , µ, pX), (Y, dY , ν, pY )) =
∑
n≥1

2−n(1∧dcGHP ((B(pX , n), dX , µ), (B(pY , n), dY , ν))).

Denote by (Xµ, dGHP ) the space of proper Polish spaces with a distinguished point, up to
measure preserving isometries, equipped with the Gromov-Hausdorff-Prokhorov metric.
Then space (Xµ, dGHP ) is a Polish space (see for example Abraham, Delmas, and Hoscheit
[1]).
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It is not hard to check that the space (E, δ) is compact and the measure ν is finite.
Further it can be seen that the limiting space (S, dS) for α = 2 in Theorem 2.1.3 is a
proper Polish space and the measure µ is finite on compact sets.

2.3 SRV(α) Case

2.3.1 Proof of Theorem 2.1.2

Throughout this proof we omit the superscript α from the notation and assume that
α ∈ (1, 2). The proof for the case α = 2 follows analogously and we remark the only
alteration to the proof that is required for α = 2.

Let Π = (Π(t) : t ≥ 0) denote a Λ-coalescent such that Λ(dp) = f(p) dp with f(p) ∼
AΛp

1−α as p → 0. Let N = (N(t) : t > 0) denote the number of blocks of process
Π. Recall that Zε(r) is the number of blocks at time (1 − r)ε that make up the block
containing 1 at time ε. We will show the convergence result by showing that Zε(r) almost
satisfies a certain martingale problem for small ε > 0.

We will simplify the notation further by writing Πε(r) := Π((1 − r)ε) and N ε(r) :=

N((1− r)ε) for r ∈ [0, 1). We will denote by F εr the natural filtration of Zε(r).
Let us briefly discuss the outline of the proof. Our technique in showing the con-

vergence Zε → Z as ε → 0 is separated in to two: showing that {Zε}ε>0 is tight
in Lemma 2.3.7 and showing that every subsequence of Zε which converges satisfies
the martingale problem for Lr, the generator of the limit Z given in Theorem 2.1.2,
which follows from Lemma 2.3.6. To show the latter statement about the martingale
problem, for r ∈ [0, 1) and j ∈ N we need to evaluate random variables of the form
P(Zε(r + δ) − Zε(r) = j|F εr) for small δ > 0. Unfortunately we cannot show that
limδ→0 δ

−1P(Zε(r+ δ)−Zε(r) = j|F εr) exists and so we are forced into computing rather
delicate estimates for P(A;Zε(r+ δ)−Zε(r) = j), where A ∈ F εr , in Lemma 2.3.2. A key
part of Lemma 2.3.2 is that the estimates for P(A;Zε(r + δ) − Zε(r) = j) are uniform
over all A ∈ F εr and r ∈ [0, 1) in some sense.

Firstly we introduce some notation. For ` ≤ n, define

S`,n := {q = (qj)
`
j=1 : 1 ≤ q1 < · · · < q` ≤ n}

S1
`,n := {z = (zj)

`
j=1 : 1 = z1 < · · · < z` ≤ n}

and notice that |S1
`,n| =

(
n−1
`−1

)
and |S`,n| =

(
n
`

)
.
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For z ∈ S1
`,n and r ∈ [0, 1) consider the event

κ(r, z) :=

{
Πε

1(0) =
⋃
i∈z

Πε
i(r)

}
∩ {Πε

i(r) 6= ∅, ∀i ∈ z} (2.5)

and note that κ(r, z) ∈ σ(Π(s) : s ∈ [(1 − r)ε, ε]). In words, this is the event that the
block containing 1 at time ε is made up of blocks with labels given by z at time (1− r)ε.
In particular

{Zε(r) = `} ∩ {N ε(r) = n} =
⋃

z∈S1
`,n

κ(r, z) ∩ {N ε(r) = n}. (2.6)

For the next lemma let Rn be the map which maps a partition on N to a partition on
[n] by projection.

The next lemma will allow us later to control the effects of a single jump.

Lemma 2.3.1. For any ε > 0, r ∈ [0, 1), A ∈ F εr and j < n, it holds that

|P(A|N ε(r) = n)− P(A|N ε(r) = n− j)| ≤ j(1− e−ε). (2.7)

To illustrate the idea behind the proof consider the event A = {Zε(r) = 2}. Appealing
to the Markov property we have that P(A|N ε(r) = n) = P(|RnΠ1(rε)| = 2) where
|RnΠ1(rε)| is the size of the block of RnΠ(rε) containing 1. Similarly for P(A|N ε(r) =

n− j). Suppose now that k /∈ RnΠ1(rε) for every k ∈ {n− j + 1, . . . , n}, then it follows
that |RnΠ1(rε)| = |Rn−jΠ1(rε)|. Thus it follows that

|P(A|N ε(r) = n)− P(A|N ε(r) = n− j)| = P({|RnΠ1(rε)| = 2}∆{|Rn−jΠ1(rε)| = 2})
≤ P(|RnΠ1(rε)| = |Rn−jΠ1(rε)|)

= P

(
n⋂

k=n−j+1

{k /∈ RnΠ1(rε)}
)
.

It is then easy to show that the probability in the final line is bounded by j(1− e−ε).

Proof. Fix r ∈ [0, 1), n ∈ N and j < n throughout. Condition on N ε(r) = n, so that
Πε(r) = (Πε

1(r), . . . ,Πε
n(r)). Let A denote the set of events of the form⋃

z∈S1
`,n

κ(u, z), u ≤ r, ` ≤ n.

Let A′ denote the π-system generated by A. Note that conditioning on N ε(r) = n implies
that for each ` ≤ n and u ≤ r, {Zε(u) = `} =

⋃
z∈S1

`,n
κ(u, z). Hence A′ generates the
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σ-algebra F εr . We first check (2.7) for A ∈ A′. Henceforth let A ∈ A′ be fixed and denote
by A1, . . . , Am ∈ A the elements such that A = A1 ∩ · · · ∩ Am.

For any u ≤ r, ` ≤ n, applying the Markov property we have

P

 ⋃
z∈S1

`,n

κ(u, z)

∣∣∣∣∣∣N ε(r) = n


= P

 ⋃
z∈S1

`,n

{RnΠ1(rε) = RnΠz1((r − u)ε) ∪ · · · ∪RnΠz`((r − u)ε)}

 (2.8)

where RnΠi(t) is the i-th block of RnΠ at time t > 0. For each Ai, i = 1, . . . ,m, we
denote by Ãni the event on the right-handside of (2.8) so that Ãni ∈ σ(RnΠ(s) : s ≤ rε)

and
P(Ai|N ε(r) = n) = P(Ãni ) i ≤ m (2.9)

We will show that P(∩i≤mÃni ∆ ∩i≤m Ãn−ji ) ≤ j(1− e−ε), which will conclude the lemma.
For any u ≤ r, ` ≤ n and z ∈ S1

`,n,

{RnΠ1(rε) = RnΠz1((r − u)ε) ∪ · · · ∪RnΠz`((r − u)ε)} ∩
n⋂

k=n−j+1

{k /∈ RnΠ1(rε)}

(2.10)

= {Rn−jΠ1(rε) = Rn−jΠz1((r − u)ε) ∪ · · · ∪Rn−jΠz`((r − u)ε)} ∩
n⋂

k=n−j+1

{k /∈ RnΠ1(rε)}.

Indeed, consider the blocks at time (r − u)ε that coalesce by time rε form the block
containing 1. The only way these can differ between the restrictions to {1, . . . , n− j} and
to {1, . . . , n} is if at least one of {n− j + 1, . . . , n} coalesced with 1 by time rε.

Recall that for each i ∈ m, Ãni and Ãn−ji are given by (2.9). Similar to (2.10),

m⋂
i=1

Ãni ∩
n⋂

k=n−j+1

{k /∈ RnΠ1(rε)} =
m⋂
i=1

Ãn−ji ∩
n⋂

k=n−j+1

{k /∈ RnΠ1(rε)}.

The event
⋂n
k=n−j+1{k /∈ RnΠ1(rε)} does not depend on u, it suffices to show that

this event has probability at least 1− j(1− e−ε) as(
m⋂
i=1

Ãni

)
∆

(
m⋂
i=1

Ãn−ji

)
⊂
(

n⋂
k=n−j+1

{k /∈ RnΠ1(rε)}
)c

.
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Now notice thatP({k ∈ RnΠ1(rε)}) = 1− e−rε ≤ 1− e−ε and hence

P

(
n⋃

k=n−j+1

{k ∈ RnΠ1(rε)}
)
≤ j(1− e−ε).

Thus it follows that (2.7) holds for every A ∈ A′.
Now let M be the set of A ∈ F εr such that (2.7) holds. Then it is easy to see that

M is a monotone class. Further A′ ⊂M and A′ generates F εr . Hence by the monotone
class theorem we have thatM = F εr .

Let λn,k be the rate at which a collision involving exactly k fixed blocks occurs when
there are currently n blocks present. Define

γn,k :=

(
n

k

)
λn,k

which is the total rate of mergers of k blocks when n blocks are present. Let us fixM > 1

and define the process ZMε by

ZMε (r) := Zε(r) ∧M.

Lemma 2.3.2. Let K ⊂ [0, 1) be a compact set, then for any j ≤M ,

sup
r∈K

sup
A∈Fεr

lim sup
δ→0

∣∣∣∣1δP(A;ZMε (r + δ)−ZMε (r) = j) − E
[
ε(j + ZMε (r))

γNε(r),j+1

N ε(r)
1A;ZMε (r)<M−j

]∣∣∣∣
≤ j(1− e−ε)3M(M + 1)

2
E
[
sup
r∈K

ε
γNε(r),j+1

N ε(r)

]
.

Proof. Notice first that for any u ∈ [0, 1), k ≤ n, z ∈ S1
k,n and π ∈ P∞ with n blocks, we

have
P(A;κ(u, z)|Πε(u) = π) = C ∀A ∈ F εu

for some constant C = C(A, u, n, k). Indeed this follows from (2.8) and the exchange-
ability of the coalescent. In particular if #π denotes the number of blocks of π we have

P(A;Zε(u) = k;N ε(u) = n) =
∑

#π=n

∑
z∈S1

k,n

P(A;κ(u, z)|Πε(u) = π)P(Πε(u) = π)

=

(
n− 1

k − 1

)
CP(N ε(u) = n).
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Thus we have that for any u ∈ [0, 1), k ≤ n ∈ N, z ∈ S1
k,n and π ∈ P∞ with n blocks,

P(A;κ(u, z)|Πε(u) = π) = P(A;Zε(u) = k|N ε(u) = n)

(
n− 1

k − 1

)−1

. (2.11)

Fix n ∈ N, ` < n ∧M , j ≤ (n− `) ∧M , r ∈ [0, 1) and A ∈ F εr . Suppose further that
π ∈ P∞ with n blocks and that δ > 0 is small. For q ∈ Sj+1,n let Mδ(q) denote the event
that there is one coalescent event in the interval ((1− r− δ)ε, (1− r)ε) which merges the
blocks of Πε(r + δ) with labels q.

Then we have that for any z ∈ S1
`+j,n

P(A;κ(r + δ, z);Zε(r) = `; Πε(r + δ) = π)

=
∑

q∈Sj+1,n
q⊂z

P(A;Mδ(q);κ(r, zq); Πε(r + δ) = π) + o(δ), (2.12)

where zq ∈ S1
`,n−j represents the position of the indices z after the merger involving

indices q has occurred. Indeed, suppose there is only one coalescent event during the
interval ((1 − r − δ)ε, (1 − r)ε), as more coalescent events are of o(δ). On the event
κ(r+ δ, z)∩{Πε(r+ δ) = π}, Zε(r) = ` if and only if during this coalescent event exactly
j+ 1 blocks πq1 , . . . , πqj+1

merge with qi ∈ z for each i ≤ j+ 1. We set q = {q1, . . . , qj+1}.
After this merger the blocks of π with labels given by z now have new labels zq ∈ S1

`,n−j.
Then we require that the blocks of Πε(r) with labels zq eventually merge to give Πε

1(1),
i.e. κ(r, zq) holds.

For q ∈ Sj+1,n let π(q) ∈ P∞ be the partition obtained from π by merging the blocks
with labels q.

Markov property of the coalescent implies that

P(A;κ(r, zq)|Πε(r + δ) = π;Mδ(q)) = P(A;κ(r, zq)|Πε(r) = π(q)),

and using (2.12) we have

P(A;κ(r + δ, z);Zε(r) = `; Πε(r + δ) = π)

=
∑

q∈Sj+1,n
q⊂z

P(Mδ(q)|Πε(r + δ) = π)P(A;κ(r, zq)|Πε(r + δ) = π;Mδ(q))P(Πε(r + δ) = π) + o(δ)

=
∑

q∈Sj+1,n
q⊂z

P(Mδ(q)|Πε(r + δ) = π)P(A;κ(r, zq)|Πε(r) = π(q))P(Πε(r + δ) = π) + o(δ).

(2.13)
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To compute each term inside the sum on the last line of (2.13), notice that

P(Mδ(q)|Πε(r + δ) = π) = δελn,j+1 + o(δ). (2.14)

For the second term we can use (2.11) to deduce

P(A;κ(r, zq)|Πε(r) = π(q)) = P(A;Zε(r) = `|N ε(r) = n− j)
(
n− j − 1

`− 1

)−1

. (2.15)

Plugging (2.14) and (2.15) into (2.13) gives

P(A;κ(r + δ, z);Zε(r) = `; Πε(r + δ) = π)

=
∑

q∈Sj+1,n
q⊂z

δελn,j+1P(A;Zε(r) = `|N ε(r) = n− j) 1(
n−j−1
`−1

)P(Πε(r + δ) = π) + o(δ)

= δελn,j+1P(A;Zε(r) = `|N ε(r) = n− j)
(
`+j
j+1

)(
n−j−1
`−1

)P(Πε(r + δ) = π) + o(δ).

Summing the above and using (2.6) we have

P(A;Zε(r + δ) = `+ j;Zε(r) = `;N ε(r + δ) = n)

=
∑

#π=n

∑
z∈S1

`+j,n

P(A;κ(r + δ, z);Zε(r) = `; Πε(r + δ) = π)

= δελn,j+1P(A;Zε(r) = `|N ε(r) = n− j)P(N ε(r + δ) = n)

(
`+j
j+1

)(
n−1
`+j−1

)(
n−j−1
`−1

) + o(δ)

= δεγn,j+1P(A;Zε(r) = `|N ε(r) = n− j)P(N ε(r + δ) = n)
j + `

n
+ o(δ)

where γn,j+1 =
(
n
j+1

)
λn,j+1 and #π denotes the number of blocks of π.

Notice that P(N ε(r) = n) = P(N ε(r + δ) = n) + o(1) thus

P(A;Zε(r + δ) = `+ j;Zε(r) = `;N ε(r + δ) = n)

= δεγn,j+1P(A;Zε(r) = `|N ε(r) = n− j)P(N ε(r) = n)
j + `

n
+ o(δ). (2.16)

On the other hand Lemma 2.3.1 gives that

|P(A;Zε(r) = `|N ε(r) = n− j)− P(A;Zε(r) = `|N ε(r) = n)| ≤ j(1− e−ε). (2.17)
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Now we no longer think of n and ` as fixed. Notice that∑
n≥j

∑
`≤(n−j)∧M

P(A;Zε(r + δ) = `+ j;Zε(r) = `;N ε(r + δ) = n)

= P(A;ZMε (r + δ)−ZMε (r) = j)

and hence from (2.17) and (2.16),

∣∣∣∣1δP(A;ZMε (r + δ)−ZMε (r) = j) −
∑
n≥j

∑
`≤(n−j)∧M

εγn,j+1
j + `

n
P(A;Zε(r) = `;N ε(r) = n)

∣∣∣∣∣∣
≤ j(1− e−ε)

∑
n≥j

∑
`≤(n−j)∧M

εγn,j+1
j + `

n
P(N ε(r) = n) + o(1)

≤ j(1− e−ε)3M(M + 1)

2

∑
n≥j

ε
γn,j+1

n
P(N ε(r) = n) + o(1).

In other words∣∣∣∣1δP(A;Zε(r + δ) −ZMε (r) = j)− E
[
ε(j + ZMε (r))

γNε(r),j+1

N ε(r)
1A;ZMε (r)≤M−j1Nε(r)≥j

]∣∣∣∣
≤ j(1− e−ε)3M(M + 1)

2
E
[
ε(j + Zε(r))

γNε(r),j+1

N ε(r)

]
+ o(1).

Taking limits concludes the proof.

Now we can identify the limiting behaviour of δ−1P(Zε(r+δ)−Zε(r) = j|F εr) by using
the approximation given in Lemma 2.3.2.

Lemma 2.3.3. For any M > 1, j < M and K ⊂ [0, 1) compact,

E
[
sup
r∈K

∣∣∣∣εγNε(r),j+1

N ε(r)
− AΛ

Γ(2− α)Γ(j − α + 1)

(1− r)αΓ(j + 2)

∣∣∣∣]→ 0 (2.18)

as ε→ 0.

Proof. Fix M > 1, j < M and K ⊂ [0, 1) compact. Firstly from Berestycki, Berestycki,
and Limic [8][Theorem 2] we have that there exists a constant Cα > 0 such that

lim
ε→0

E

[
sup
r∈K

∣∣∣∣ (1− r)ε
CαN ε(r)1−α − 1

∣∣∣∣2
]

= 0. (2.19)

One can show (see Feller [28][XIII.6]) that this constant is given by

Cα =
α

Γ(2− α)
.
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Using the Cauchy-Schwartz inequality we have

E
[
sup
r∈K

∣∣∣∣εγNε(r),j+1

N ε(r)
− α

(1− r)Γ(2− α)

γNε(r),j+1

N ε(r)α

∣∣∣∣]2

= E
[
sup
r∈K

∣∣∣∣γNε(r),j+1

N ε(r)α

(
(1− r)εΓ(2− α)

αN ε(r)1−α − 1

)∣∣∣∣]2

≤ E

[
sup
r∈K

∣∣∣∣γNε(r),j+1

N ε(r)α

∣∣∣∣2
]
E

[
sup
r∈K

∣∣∣∣(1− r)εΓ(2− α)

αN ε(r)1−α − 1

∣∣∣∣2
]
. (2.20)

The second term on the last line converges to zero by (2.19), thus we focus on the first
term in the last line.

Recall that for n ∈ N we have that

γn,j+1 =

(
n

j + 1

)
λn,j+1 =

Γ(n+ 1)

Γ(j + 2)Γ(n− j)

∫ 1

0

pj−1(1− p)n−j−1 Λ(dp). (2.21)

Moreover Λ(dp) = f(p) dp where f(p) ∼ AΛp
1−α as p→ 0. Fix η0 > 0, then there exist a

p0 ∈ (0, 1) such that whenever p < p0 we have |f(p)− AΛp
1−α| ≤ ηp1−α. Thus∣∣∣∣∫ p0

0

pj−1(1− p)n−j−1 Λ(dp)− AΛ

∫ p0

0

pj−α(1− p)n−j−1 dp

∣∣∣∣
≤ ηAΛ

∫ p0

0

pj−α(1− p)n−j−1 dp ≤ ηAΛ

∫ 1

0

pj−α(1− p)n−j−1 dp. (2.22)

Then combining (2.21) and (2.22) we have∣∣∣∣γn,j+1 −
(

n

j + 1

)
AΛ

∫ 1

0

pj−α(1− p)n−j−1 dp.

∣∣∣∣
≤ η

(
n

j + 1

)
AΛ

∫ 1

0

pj−α(1− p)n−j−1 dp+

∫ 1

p0

pj−1(1− p)n−j−1|AΛp
1−α − f(p)| dp

≤ η

(
n

j + 1

)
AΛ

∫ 1

0

pj−α(1− p)n−j−1 dp+ (1− p0)n−j−1(AΛp
1−α
0 + Λ[0, 1]) (2.23)

From the definition of the Beta function we have that(
n

j + 1

)∫ 1

0

pj−α(1− p)n−j−1 dp =
Γ(j − α + 1)Γ(n+ 1)

Γ(j + 2)Γ(n− α + 1)
. (2.24)
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Thus using (2.23) and (2.24) we have,

E

[
sup
r∈K

∣∣∣∣γNε(r),j+1

N ε(r)α
− AΛ

Γ(j − α + 1)Γ(N ε(r) + 1)

N ε(r)αΓ(j + 2)Γ(N ε(r)− α + 1)

∣∣∣∣2
]

≤ ηAΛE

[
sup
r∈K

∣∣∣∣ Γ(j − α + 1)Γ(N ε(r) + 1)

N ε(r)αΓ(j + 2)Γ(N ε(r)− α + 1)

∣∣∣∣2
]

+ (AΛp
1−α
0 + Λ[0, 1])2E[sup

r∈K
(1− p0)2(Nε(r)−j−1)]. (2.25)

The final term on the right hand side converges to 0 as ε→ 0. For the penultimate term
an application of Stirling’s formula yields that

E

[
sup
r∈K

∣∣∣∣ Γ(j − α + 1)Γ(N ε(r) + 1)

N ε(r)αΓ(j + 2)Γ(N ε(r)− α + 1)
− Γ(j − α + 1)

Γ(j + 2)

∣∣∣∣2
]
→ 0

as ε → 0. Thus the first term on the left hand side of (2.25) goes to zero as ε → 0.
Moreover using the triangle inequality we have that

E

[
sup
r∈K

∣∣∣∣γNε(r),j+1

N ε(r)α
− AΛ

Γ(j − α + 1)

Γ(j + 2)

∣∣∣∣2
]

≤ E

[
sup
r∈K

∣∣∣∣γNε(r),j+1

N ε(r)α
− AΛ

Γ(j − α + 1)Γ(N ε(r) + 1)

N ε(r)αΓ(j + 2)Γ(N ε(r)− α + 1)

∣∣∣∣2
]

(2.26)

+ E

[
sup
r∈K

∣∣∣∣AΛ
Γ(j − α + 1)Γ(N ε(r) + 1)

N ε(r)αΓ(j + 2)Γ(N ε(r)− α + 1)
− Γ(j − α + 1)

Γ(j + 2)

∣∣∣∣2
]

→ 0

as ε→ 0. A final application of the triangle inequality and using (2.20) gives

E
[
sup
r∈K

∣∣∣∣εγNε(r),j+1

N ε(r)
− AΛ

Γ(2− α)Γ(j − α + 1)

(1− r)αΓ(j + 2)

∣∣∣∣]
≤ E

[
sup
r∈K

∣∣∣∣εγNε(r),j+1

N ε(r)
− α

(1− r)Γ(2− α)

γNε(r),j+1

N ε(r)α

∣∣∣∣]+ E
[
sup
r∈K

∣∣∣∣γNε(r),j+1

N ε(r)α
− Γ(j − α + 1)

Γ(j + 2)

∣∣∣∣] .
The proof now follows from (2.26) and (2.25).

Remark 2.3.4. In the case when α = 2 all the arguments in this section apply apart
from Lemma 2.3.3. In its place we have that for α = 2 as ε→ 0,

E
[
sup
r∈K

∣∣∣∣εγNε(r),j+1

N ε(r)
− 1

1− r1j=1

∣∣∣∣]→ 0.
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Indeed, this follows from the fact that for α = 2, γn,2 =
(
n
2

)
and γn,j+1 = 0 for j > 1,

together with Berestycki, Berestycki, and Limic [8][Theorem 2].

The preceding two lemmas directly imply the following.

Lemma 2.3.5. For each M > 1, j ≤ M and K ⊂ [0, 1), there exists a constant C =

C(j,M,K) > 0 such that

lim sup
δ→0

∣∣∣∣1δP(A;ZMε (r + δ)−ZMε (r) = j) −AΛ
Γ(2− α)Γ(j − α + 1)

(1− r)αΓ(j + 2)
E
[
(j + ZMε (r))1A

]∣∣∣∣ ≤ Cε

uniformly over all r ∈ K and A ∈ F εr .

For f : N→ R recall that

Lrf(i) := AΛ

∑
j≥1

(i+ j)
Γ(2− α)Γ(j − α + 1)

(1− r)αΓ(j + 2)
[f(i+ j)− f(i)]. (2.27)

Using the last two lemmas we are able to show that ZMε almost solves a martingale
problem. This will enable us to show that the limiting process satisfies the martingale
problem.

Lemma 2.3.6. Let u < r ∈ [0, 1) then for any f : N→ R with support in {1, . . . , bMc},

lim
ε→0

sup
A∈Fεu

∣∣∣∣E [(f(ZMε (r))−
∫ r

0

Lsf(ZMε (s)) ds

)
1A

]
− E

[(
f(ZMε (u))−

∫ u

0

Lsf(ZMε (s)) ds

)
1A

]∣∣∣∣ = 0.

Proof. Fix u < r ∈ [0, 1), A ∈ F εs and f : N→ R with support in {1, . . . , bMc}. Suppose
that δ > 0 is small. Suppose that {s`}mi=0 is such that s0 = u, sm = r and s` − s`−1 = δ

for each ` = 1, . . . ,m. Now

E[(f(ZMε (r))− f(ZMε (u)))1A] =
m∑
`=1

E[(f(ZMε (s`))− f(ZMε (s`−1)))1A]

=
m∑
`=1

M∑
j=1

M∑
i=1

[f(i+ j)− f(i)]P(ZMε (s`)−ZMε (s`−1) = j;ZMε (s`−1) = i;A). (2.28)

Now by Lemma 2.3.5, for small enough δ > 0, there exists a constant C > 0 indepen-
dent of i, j, ` and A (but depending on M) such that∣∣∣∣[f(i+ j)− f(i)]

P(ZMε (s`)−ZMε (s`−1) = j;ZMε (s`−1) = i;A)

δ
− Ls`−1

f(i)P(ZMε (s`−1) = i;A)

∣∣∣∣ ≤ Cε.

(2.29)
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Suppose also that δ > 0 is small enough so that

E

[∣∣∣∣∣
∫ r

u

Lsf(ZMε (s)) ds− δ
m∑
`=1

Ls`−1
f(ZMε (s`−1))

∣∣∣∣∣
]
< ε. (2.30)

Thus from (2.28), (2.29) and (2.30) and using the fact that f is bounded,∣∣∣∣E [(f(ZMε (r))− f(ZMε (u))−
∫ r

u

Lsf(ZMε (s)) ds

)
1A

]∣∣∣∣ ≤ C ′ε

for some new constant C ′ > 0. The result follows by taking limits.

Next we show a tightness result.

Lemma 2.3.7. For each M > 1, the sequence of processes {ZMε }ε>0 is tight in the
Skorokhod sense.

Proof. Let M > 1 be fixed. To prove this lemma we will verify the conditions of
aldous_tightness [Corollary 2]. Note that ZMε is uniformly bounded by M . Hence
it suffices to check that for each s ∈ [0, 1), there exists a deterministic constant α(ε, δ)

such that
sup
r≤s

P(ZMε (r + δ)−ZMε (r) > 0|F εr) ≤ α(ε, δ) a.s. (2.31)

and
lim
δ→0

lim sup
ε→0

α(ε, δ) = 0. (2.32)

Fix s ∈ [0, 1), let r ≤ s and let δ > 0. From (2.16) we have that for each A ∈ F εr ,
`, j ∈ {1, . . . ,M} and n ∈ N,

P(A;Zε(r + δ) = `+ j;Zε(r) = `;N ε(r + δ) = n) ≤ δε
γn,j+1

n
P(N ε(r) = n)2M + o(δ).

Summing over `, j ∈ {1, . . . ,M} and n ∈ N we get

P(A;ZMε (r + δ)−ZMε (r) > 0) ≤ 3Mδ

M∑
j=1

E
[
ε
γNε(r),j+1

N ε(r)

]
+ o(δ) ≤ δC

M∑
j=1

E
[
ε
γNε(r),j+1

N ε(r)

]

for some constant C > 0.
Hence we have that (2.31) holds with

α(ε, δ) = δC sup
r≤s

M∑
j=1

E
[
ε
γNε(r),j+1

N ε(r)

]
.
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Using Lemma 2.3.3,

lim sup
ε→0

α(ε, δ) = δC lim sup
ε→0

sup
r≤s

M∑
j=1

E
[
ε
γNε(r),j+1

N ε(r)

]

= δC
M∑
j=1

AΛ
Γ(2− α)Γ(j − α + 1)

(1− s)αΓ(j + 2)
.

Taking limits as δ → 0 in the above equation we obtain (2.32).

Now we can show the convergence of Zε in the Skorokhod sense to a Markov process
Z = (Z(r) : r ∈ [0, 1)) with generator given by (2.27).

Proof of Theorem 2.1.2. We are done if we can show that for any M > 1 we have that

ZMε → (Z(r) ∧M : r ∈ [0, 1))

in the Skorokhod sense as ε→ 0.
Fix M > 1. The sequence of processes {ZMε }ε>0 is tight by Lemma 2.3.7. Suppose

now that for some sequence ε′ → 0 we have that

ZMε′ → ZM

in the Skorokhod sense as ε′ → 0, to some process ZM = (ZM(r) : r ∈ [0, 1)). It is
enough to show that ZM has the same law as (Z(r) ∧M : r ∈ [0, 1)). We will show
this by showing that ZM satisfies a martingale problem. Let f : N→ R have support in
{1, . . . , bMc}. Then to prove the lemma, it is enough to show that

M f
r := f(ZM(r))−

∫ r

0

Lsf(ZM(s)) ds (2.33)

is a martingale. Let u ∈ [0, 1) be fixed and let D([0, u],N) denote the Skorokhod space
of cádlág functions g : [0, u]→ N. Suppose that F : D([0, u],N)→ R is a continuous and
bounded function. We will show (2.33) by showing that for u < r < 1,

E[M f
r F ((ZM(s) : s ≤ u))] = E[M f

uF ((ZM(s) : s ≤ u))]. (2.34)

Fix u < r < 1 and η > 0. The Skorokhod convergence implies that there exist an



46 46

ε0 > 0 such that∣∣∣∣E[M f
r F ((ZM(s) : s ≤ u))] −E

[(
f(ZMε0 (r))−

∫ r

0

Lsf(ZMε0 (s)) ds

)
F ((ZMε0 (s) : s ≤ u))

]∣∣∣∣ < η.

(2.35)

On the other hand by Lemma 2.3.6, we have that there exists an ε1 > 0 such that∣∣∣∣E [(f(ZMε1 (r))−
∫ r

0

Lsf(ZMε1 (s)) ds

)
F ((ZMε1 (s) : s ≤ u))

]
− E

[(
f(ZMε1 (r))−

∫ r

0

Lε1s f(ZMε1 (s)) ds

)
F ((ZMε1 (s) : s ≤ u))

]∣∣∣∣ < η. (2.36)

Applying the Skorokhod convergence once more yields that there exists an ε2 > 0

such that∣∣∣∣E[M f
uF ((ZM(s) : s ≤ u))] −E

[(
f(ZMε2 (u))−

∫ u

0

Lsf(ZMε2 (s)) ds

)
F ((ZMε2 (s) : s ≤ u))

]∣∣∣∣ < η.

Combining this with (2.35) and (2.36) gives that

|E[M f
r F ((ZM(s) : s ≤ u))]− E[M f

uF ((ZM(s) : s ≤ u))]| < 3η

As η > 0 is arbitrary this shows (2.34) which concludes the proof.

2.3.2 Proof of Theorem 2.1.1

The proof of Theorem 2.1.1 follows from Theorem 2.1.2 in a straightforward manner.
We explain the main idea. Here and throughout we let Bε(i, r) denote the closed ball of
radius r around i in the space (E, ε−1δ). Then to show the theorem it suffices to show that
(Bε(1, 1), ε−1δ) converges weakly. Indeed we may assume that i = 1 by exchangeability
of the coalescent and the proof for general r > 0 follows with more cumbersome notation.

Recall the definition of the process Zε from Theorem 2.1.2. As any two balls in
an ultra-metric space are either disjoint or one contains the other, for each r ∈ (0, 1),
the space (Bε(1, 1), ε−1δ) can be covered uniquely by disjoint closed balls B1, . . . , Bn ⊂
(Bε(1, 1), ε−1δ) of radius 1−r. The number of such balls is precisely the number of blocks
of Π at time (1− r)ε that make up the block containing 1 at time ε. Thus

Zε(r) = #{disjoint closed balls of radius 1− r needed to cover Bε(1, 1)}. (2.37)

Furthermore we shall see we can discover the exact structure of (Bε(1, 1), ε−1δ) using
the process Zε. Fix η ∈ (0, 1) and let B1, . . . , BZε(1−η) denote the disjoint closed balls
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of radius η that cover the space (Bε(1, 1), ε−1δ). Now define a metric r(η)
ε on S

(η)
ε :=

{1, . . . ,Zε(1− η)} by
r(η)
ε (i, j) = dist(Bi, Bj). (2.38)

Notice that the ordering of the balls B1, . . . , BZε(1−η) do not matter in the sense that the
spaces constructed from two different orderings are isometric. Henceforth suppose that
1 ∈ B1. We will first show the convergence of the metric space (S

(η)
ε , r

(η)
ε ) as ε→ 0.

Given the process Zε we can construct the space (S
(η)
ε , r

(η)
ε ) as follows. First construct

a tree T from a branching process. Start the tree with one immortal particle which
will not die. We call all other particles mortal. Suppose now that for some i ∈ N and
j ≥ 1, Zε(r−) = i and Zε(r+) = i + j. Then there is a birth at height r of the tree.
With probability (j+ 1)/(i+ j), the immortal particle gives birth to j offspring and with
probability (i− 1)/(i+ j) a uniformly chosen mortal individual dies gives birth to j + 1

offspring. Thus the tree has exactly Zε(1− η) leaves and height 1− η. These leaves form
the space S(η)

ε and the distance r between two leaves is the genealogical distance i.e. half
of the length of the unique path between the two leaves. Use the same procedure but
with the process Z to obtain a space (S(η), r(η)). It is clear that (S(η), r(η)) is a compact
metric space.

Using Theorem 2.1.2 and Skorokhod’s representation theorem suppose henceforth that
Zε → Z as ε → 0 almost surely under the Skorokhod topology. Let J ε1, . . . , J εn be the
jumps of the process Zε before time 1 − η and similarly let J1, . . . , Jm be the jumps of
the process Z before time 1 − η. Then from the almost sure convergence of the process
Zε to Z we can conclude the following for ε > 0 small enough. Firstly m = n and
Zε(J

ε
i ) = Z(Ji) for each i ≤ n = m. Second, maxi≤n |J εi − Ji| is small.
Thus for ε > 0 small enough this gives a coupling between the spaces (S

(η)
ε , r

(η)
ε ) and

(S(η), r(η)) such that S(η) = S
(η)
ε and further

max
i,j∈S(η)

|r(η)
ε (i, j)− r(η)(i, j)| ≤ 2Zε(1− η) max

i≤n
|J εi − Ji|

which is small. Hence (S
(η)
ε , r

(η)
ε )→ (S(η), r(η)) almost surely under the compact Gromov-

Hausdorff topology as ε→ 0.
Notice that {(S(η), r(η))}η∈(0,1) is a Cauchy sequence and by completeness we have

that ((S(η), r(η))→ (S, r) to some compact space (S, r) almost surely under the compact
Gromov-Hausdorff topology as η ↓ 0. On the other hand we have that the compact
Gromov-Hausdorff distance between (S

(η)
ε , r

(η)
ε ) and (Bε(1, 1), ε−1δ) is a most η. Thus it

follows that (Bε(1, 1), ε−1δ)→ (S, r) almost surely under the compact Gromov-Hausdorff
topology as ε→ 0, which finishes the proof.
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1

ji

1− d(i, j)

Figure 2.3: Visual interpretation of the construction of the metric space (S, d).

2.4 Kingman Case

In this section we will prove Theorem 2.1.3. As before we write Bε(i, r) to mean the
closed ball of radius r around i in the space (E, ε−1δ). Recall the construction of the
space (S, dS, µ, 0) given in the statement of Theorem 2.1.3. Again we will only show that

(Bε(1, 1), ε−1δ, 4ε−1ν)→ (B(0, 1), dS, µ)

weakly under the compact Gromov-Hausdorff metric as ε→ 0, where B(0, 1) ⊂ (S, dS) is
the closed ball of radius 1 around 0.

We first show how to metric measure spaces using excursions. We term this the Evans
metric space associated to an excursion due to the similarities of the Evans metric space
associated to coalescent processes. We describe this process in generality and then use
it to construct the spaces (Bε(1, 1), ε−1δ, 4ε−1ν), (B(0, 1), dS, µ) as well as an auxiliary
space.

Constructing Evans metric measure space from an excursion

Let f = (f(t) : 0 ≤ t ≤ ζ(f)) be an excursion that has height greater than 1 meaning
f : [0, ζ(f)]→ [0,∞) is a continuous path such that f hits 1 and further f(t) = 0 if and
only if t ∈ {0, ζ(f)}. For t ∈ [0, ζ(f)] and x ∈ R define the local time L(t, x) at level x
at time t by

L(t, x) = lim
ε→0

1

2ε

∫ t

0

1f(s)∈(x−ε,x+ε)}ds.

We will suppose that such limit exists and moreover that (L(t, x) : t ∈ [0, ζ(f)], x ∈ R)

is jointly continuous. In fact in all the application we shall consider, the excursion f will
be Brownian and we refer to Revuz and Yor [41][Chapter VI] for definition and basic
properties of local times in this case. We now show how to obtain a metric measure space
(S, d, π) from the excursion f . Let {εi}∞i=1 be the positive excursions of the excursion f
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above level 1 and we order them as follows. Let U1, U2 . . . be i.i.d. random variables with
the law given by the normalised local time at level 1, dL(·, 1)/Z1 where Z1 = L(ζ(f), 1) is
the total local time spent at level 1. For each k ∈ N, Uk is the local time corresponding to
a unique excursion at level 1 which may be positive or negative. Let Uk1 , Uk2 , . . . denote
the local times corresponding to positive excursions, then {εi}∞i=1 is ordered such that for
each i ∈ N, εi is the excursion which starts at local time Uki .

For i, j ∈ N with i 6= j we define 1−d(i, j) to be the first height at which εi and εj are
a part of the same excursion (see Figure 2.3). In other words let t(εi) and t(εj) denote
the start time of the excursions εi and εj and suppose without a loss of generality that
t(εi) < t(εj). Then

d(i, j) = 1− inf{f(t) : t(εi) ≤ t ≤ t(εj)}. (2.39)

By definition, the space (S, d) is the completion of (N, d). We also define a measure π
on (S, d) as follows. For each i ∈ N and r ∈ (0, 1], every closed ball B(i, r) ⊂ (S, d)

corresponds to an excursion e of f above level 1−r that hits level 1. We define π(B(i, r))

to be the total local time `1(e) the excursion e attains at level 1. Note that this defines
the measure uniquely by Carathédeory’s extension theorem and thus we obtain a metric
measure space (S, d, π). We remark that the total mass π(S) = Z1 is the total local time
spent at level 1 by the excursion f and thus is finite. Lastly in all of our applications
the excursion f will have unique local minima which is enough to conclude that (S, d) is
compact.

Definition 2.4.1. The metric measure space (S, d, π) is called the Evans metric measure
space associated to the excursion f .

Remark 2.4.2. For the reader who is familiar with continuum real trees, the Evans
metric measure space associated to the excursion f can be thought of as follows. Let
(T, dT ) be the rooted real tree that is encoded by the excursion f . Delete every branch
of T which fails to reach distance 1 from the root. Next, delete every point which is of
distance greater than 1 from the root. Let (T̃ , dT̃ ) denote the rooted real tree which is the
result of T after these operations. Then the space S is the set of points which is distance
1 from the root of T̃ . The distance d is given by (1/2)dT̃ and the measure π is the uniform
measure on T̃ .

We now use this construction to give an alternative construction to the limiting space
(B(0, 1), dS, µ). Let W = (Wt : t ∈ R) be a two-sided Brownian motion and let Y = (Yt :

t ∈ [0, ζ(Y )]) be the excursion of W above level −1 straddling the origin. That is, let
τ+ = inf{t > 0 : Wt = −1} and τ− = sup{t < 0 : Wt = −1}, then Yt = Wt+τ− + 1 for
t ≤ τ+ − τ−. It is not hard to check that the space (B(0, 1), dS, µ) can be constructed as
the Evans metric measure space associated to the excursion Y .
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Next we recall an alternative construction of the Evans space (E, δ, ν) associated to
Kingman’s coalescent. LetX = (Xt : 0 ≤ t ≤ ζ(X)) be a Brownian excursion conditioned
to hit level 1. Let (Ẽ, δ̃, ν̃) be the Evans metric measure space associated to the excursion
X. For x ≥ 0 let Zx be the total local time attained at level x ≥ 0 by the process X. For
t ∈ [0, 1] define

V (t) :=

∫ 1

1−t

4

Zv
dv. (2.40)

Then from Berestycki and Berestycki [7][Theorem 1.1] we can construct the space (E, δ, ν)

as follows. Firstly E = Ẽ. Next for x, y ∈ E we set δ(x, y) = V (δ̃(x, y)). Lastly we let ν
be the renormalisation of ν̃, that is ν(·) = ν̃(·)/Z1 where Z1 is the total local time that
the excursion X attains at level 1.

Define
Tε :=

4

εZ1−
√
ε

∨ 1√
ε

(2.41)

and let B̃ε(1, 1) ⊂ (Ẽ, Tεδ̃) be the closed ball of radius 1 around 1. Our proof will go
by showing that the spaces (B(0, 1), dS, µ) and (B̃ε(1, 1), Tεδ̃, Tεν̃) are close (see Lemma
2.4.5). Then we will see in (2.49) that the spaces (B̃ε(1, 1), Tεδ̃, Tεν̃) and (Bε(1, 1), ε−1δ, 4ε−1ν)

are close.
We start by presenting an alternative construction of the space (B̃ε(1, 1), Tεδ̃, Tεν̃).

Define
Xε(t) := 1 + [X(tT−2

ε )− 1]Tε 0 ≤ t ≤ ζ(X)T 2
ε . (2.42)

The Evans metric measure space associated with the excursion (Xε(t) + Tε − 1 : 0 ≤ t ≤
ζ(X)T 2

ε ) is precisely (Ẽ, Tεδ̃, Tεν̃). We wish to construct the subspace (B̃ε(1, 1), Tεδ̃, Tεν̃)

directly from an excursion Yε of Xε which we describe now.
Let e(ε)

1 , . . . , e
(ε)
M(ε) be the excursions of Xε above level 0 that reach level 1 where M(ε)

is the total number of such excursions. Though we have obtained the process Xε by
performing diffusive scaling on X, the scaling factor Tε is random so it is not obvious
that e(ε)

1 , . . . , e
(ε)
M(ε) are themselves Brownian excursions conditioned to reach level 1. We

will see that this is nevertheless the case in Lemma 2.4.3.
Given e(ε)

1 , . . . , e
(ε)
M(ε), the excursion Yε ofX that we are after is selected from e

(ε)
1 , . . . , e

(ε)
M(ε)

where we select biased on how much local time at 1 each of the excursions e(ε)
1 , . . . , e

(ε)
M(ε)

accumulate. Precisely, define Yε as follows

P(Yε = e
(ε)
i |e(ε)

1 , . . . , e
(ε)
M(ε)) =

`1(e
(ε)
i )∑M(ε)

j=1 `1(e
(ε)
j )

1 ≤ i ≤M(ε) (2.43)
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where `1(e
(ε)
i ) is the total local time at 1 that the excursion e(ε)

i accumulates. Then the
space (B̃ε(1, 1), Tεδ̃, Tεν̃) can be constructed as the Evans metric measure space associated
to the excursion Yε.

We will use this to show that the limiting space (B(0, 1), dS, µ) and the space (B̃ε(1, 1), Tεδ̃, Tεν̃)

are close. We begin with the following lemma.

Lemma 2.4.3. Let e(ε)
1 , . . . , e

(ε)
M(ε) be the excursions of Xε above level 0 that reach level 1.

Then conditionally on M(ε), e(ε)
1 , . . . , e

(ε)
M(ε) are i.i.d. Brownian excursions conditioned to

reach level 1.

Proof. Fix ε > 0. Observe that the excursions e(ε)
1 , . . . , e

(ε)
M(ε) correspond to excursions of

X above level u := 1 − 1/Tε that hit level 1. Note that since Tε ≥ 1/
√
ε we have that

u ≥ u0 := 1−√ε. Define the σ-algebra H = σ(Xα(s) : s ≥ 0) where

α(s) := inf

{
t ≥ 0 :

∫ t

0

1{X(v)≤u0}dv > s

}
.

In words H contains all the information about the excursions of X below level u0 =

1−√ε. The total local time Zu0 of the process X at level u0 satisfies (see Revuz and Yor
[41][Chapter VI, Corollary (1.9)])

Zu0 = lim
η→0

1

η

∫ ζ(X)

0

1{Xs∈(u0−η,u0]} ds.

Thus Zu0 is measurable with respect to H and consequently so is Tε and u = 1− 1/Tε.
It is well known that after hitting level u0, the law of X is that of a Brownian motion

started at level u0, killed the first time it hits 0 and conditioned to reach level 1 before
hitting level 0. Itô’s description of Brownian motion (Revuz and Yor [41][Chapter XII,
Theorem (2.4)]) tells us that conditionally on Zu0 = z the excursions of the process X
above level u0 form a Poisson point process on the local time interval [0, z], conditioned
to have at least one excursion of height grater than

√
ε. Further, the excursions above

level 1−√ε are independent of the excursions below level 1−√ε, and hence independent
of the σ-algebra H.

On the other hand Zu0 and u are measurable with respect to H. Thus conditionally
on H the excursions of the process X above level u = 1 − 1/Tε that hit level 1 are
i.i.d. Brownian excursions conditioned to have height greater than 1/Tε. By Brownian
scaling and (2.42) it follows that conditionally on H and M(ε) = m, e(ε)

1 , . . . , e
(ε)
m are i.i.d.

Brownian excursions conditioned to reach level 1. In other words let e be a Brownian
excursion conditioned to reach level 1 and φ1, . . . , φm be continuous bounded functions
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mapping the set of excursions to R, then we have just shown that

E[φ1(e
(ε)
1 ) . . . φm(e(ε)

m )|H,M(ε) = m] =
m∏
i=1

E[φi(e)].

Taking expectations conditionally on M(ε) = m on both sides above finishes the proof.

The next lemma shows the convergence of the local time at 1 of Yε. Recall that Y
is the excursion of two-sided Brownian motion straddling the origin which is used in the
construction of the space (B(0, 1), dS, µ).

Lemma 2.4.4. We have that
`1(Yε)→ `1(Y )

in distribution as ε→ 0, where `1(·) denotes the total local time attained by the excursion
at level 1.

Proof. Let e(ε)
1 , . . . , e

(ε)
M(ε) be the excursions of Xε above level 0 that reach level 1. Condi-

tion onM(ε) = m. Then from Lemma 2.4.3 it follows that e(ε)
1 , . . . , e

(ε)
m are i.i.d. Brownian

excursions conditioned to reach level 1. Thus it follows that `1(e
(ε)
1 ), . . . , `1(e

(ε)
m ) are i.i.d.

exponential random variables with parameter 1/2 (see Revuz and Yor [41][Chapter VI,
Proposition (4.6)]). Let E1, E2, . . . be i.i.d. exponential random variables with parameter
1/2, then by (2.43) it follows that

P(`1(Yε) ∈ ·|M(ε) = m) = E
[

mE1∑m
i=1 Ei

1{E1∈·}

]
.

On the other hand `1(Y ) has the same law as E1 + E2, the sum of two independent
exponential random variables. This is a sized biased exponential random variable and by
bounded convergence and the law of large numbers we have

P(`1(Y ) ∈ ·) = lim
n→∞

E
[

nE1∑n
i=1 Ei

1{E1∈·}

]
.

The lemma now follows from the fact that M(ε)→∞ in probability as ε→ 0.

From Lemma 2.4.3 for Yε and the definition of Y we can deduce the following. Con-
ditionally on `1(Yε) = `ε and `1(Y ) = `, the excursions Yε and Y are both Brownian
excursions conditioned on attaining total local time `ε and `, respectively, at level 1.
Thus at this point it is immediate that Yε → Y in the Skorokhod sense as ε→ 0. Unfor-
tunately, this is not enough to show the weak convergence of the space (B̃ε(1, 1), Tεδ̃, Tεν̃),
under the Gromov-Hausdorff-Prokhorov metric, to the space (B(0, 1), dS, µ). Instead, in



53 53

the next lemma we construct a coupling between Yε and Y under which the paths of the
two processes agree up to a time. This will in turn enable us to show that the spaces
(B̃ε(1, 1), Tεδ̃, Tεν̃) and (B(0, 1), dS, µ) are close to each other.

Lemma 2.4.5. We have that

(B̃ε(1, 1), Tεδ̃, Tεν̃)→ (B(0, 1), dS, µ)

weakly as ε→ 0 under the Gromov-Hausdorff-Prokhorov topology.

Proof. We first present a coupling between Yε and Y . By Lemma 2.4.4 and Skorokhod
representation theorem we can suppose that `1(Yε) and `1(Y ) are coupled such that
`1(Yε) → `1(Y ) almost surely as ε → 0. Fix ε > 0 and condition on `1(Yε) = `ε and
`1(Y ) = `. Suppose further that `ε ≤ ` (the other case is similar). Note that both Yε

and Y are Brownian excursions conditioned to have `ε and ` total local time at level 1.
Hence we can couple Yε and Y such that they have the same path until their local time
at level 1 reaches `ε.

Excursions of the process Yε above level 1 correspond to the dense subset N of of the
space (B̃ε(1, 1), Tεδ̃). Similarly for Y and (B(0, 1), dS). Thus the coupling of the processes
Yε and Y gives us a coupling of the spaces such that (B̃ε(1, 1), Tεδ̃) ⊂ (B(0, 1), dS). Under
this coupling of the spaces it is immediate that

dPr(Tεν̃, µ) = |`− `ε|. (2.44)

where dPr denotes the Prokhorov distance.
Fix η ∈ (0, 1) and recall that dH((B̃ε(1, 1), Tεδ̃), (B(0, 1), dS)) < η if and only if the

η-enlargement of the space (B̃ε(1, 1), Tεδ̃) contains (B(0, 1), dS). Clearly it suffices to show
the latter condition for the dense subspaces of (B̃ε(1, 1), Tεδ̃) and (B(0, 1), dS) correspond-
ing to the excursions above level 1 of the processes Yε and Y respectively. Consider the
excursions of Y above level 1 which appear before local time `ε. Call these excursions
matched; these are also excursions of Yε above level 1. Then dH((B̃ε(1, 1), Tεδ̃), (B(0, 1), dS)) <

η if and only if every excursion of Y above level 1−η that hits level 1 contains a matched
excursion. This is the same as the event that every excursion of Y below 1 with local
time in the interval [`ε, `) has infimum greater than −η. Thus from standard excursion
theory (see Revuz and Yor [41][Chapter XII, Exercise (2.10)]) we have that

P(dH((B̄Tε(1, 1), Tεδ̃), (B̄(0, 1), dS)) ≤ η) = e−
|`−`ε|
η . (2.45)

The equations (2.44) and (2.45) hold by the same argument when ` < `ε. Hence in
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conclusion we have constructed a coupling where

P(dH((B̃ε(1, 1), Tεδ̃), (B(0, 1), dS)) + dPr(Tεν̃, µ) > 2η)

≤ P(dH((B̃ε(1, 1), Tεδ̃), (B(0, 1), dS)) > η) + P(dPr(Tεν̃, µ) > η)

= 1− E
[
exp

(
−|`1(Yε)− `1(Y )|

η

)]
+ P(|`1(Yε)− `1(Y )| > η).

Taking the limit as ε→ 0 above and using bounded convergence finishes the proof.

Using the previous lemma we can now prove Theorem 2.1.3.

Proof of Theorem 2.1.3. For t ∈ [0, 1] let U(t) denote the inverse of V (t) in (2.40), that
is

U(t) = V −1(t) = inf

{
s > 0 :

∫ 1

1−s

4

Zv
dv > t

}
.

Fix η ∈ (0, 1) and define

Aηε := {(1− η)Z1−
√
ε ≤ Zs ≤ (1 + η)Z1−

√
ε ∀s ∈ [1− U(ε), 1]}

Bε :=

{
Tε =

4

εZ1−
√
ε

}
=
{
Z1−

√
ε ≤ ε−1/2

}
Eηε := Aηε ∩Bε.

We claim that P(Eηε )→ 1 as ε→ 0. Indeed, x 7→ Zx is uniformly continuous (this fol-
lows from the Ray-Knight theorems, see Revuz and Yor [41][Chapter XI, Theorem (2.2)]).
Further it is elementary to check that limε→0 U(ε) = 0. This shows that P(Aηε ) → 1 as
ε → 0. The convergence of P(Bε) follows from the fact that Z1−

√
ε is distributed expo-

nentially with parameter 1/(2 − 2
√
ε) (see Revuz and Yor [41][Chapter VI, Proposition

(4.6)]). Thus P(Eηε )→ 1 as ε→ 0.
On the event Eηε we have that for each t ≤ ε,

U(t)εTε
1 + η

=
4U(t)

(1 + η)Z1−
√
ε

≤ t ≤ 4U(t)

(1− η)Z1−
√
ε

=
U(t)εTε
1− η . (2.46)

Recall that E = Ẽ and that for each x, y ∈ E, δ̃(x, y) = U(δ(x, y)). Hence from (2.46) it
follows that on the event Eηε for any x, y ∈ E such that δ(x, y) ≤ ε we have

1

1 + η
Tεδ̃(x, y) ≤ ε−1δ(x, y) ≤ 1

1− ηTεδ̃(x, y). (2.47)
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A brief computation shows that on the event Eηε , for each x ∈ E and r ∈ (0, 1]

4ε−1ν(Bε(x, r)) =
TεZ1−

√
ε

Z1

ν̃
(
B̃ε (x, TεU(r)ε)

)
where B̃ε(p, r) ⊂ (Ẽ, Tεδ̃) is the closed ball of radius r > 0 around p. Thus it follows that
on the event Eηε for each x ∈ E,

1

1 + η
Tεν̃(B̃ε(x, (1− η)r)) ≤ 4ε−1ν(B̄ε(x, r)) ≤

1

1− ηTεν̃(B̃ε(x, (1 + η)r)). (2.48)

Using the fact that P(Eηε ) → 1 as ε → 0, Lemma 2.4.5 and that η > 0 is arbitrary, an
easy pinching argument using (2.47) and (2.48) shows that

lim
ε→0

dGHP ((Bε(1, 1), ε−1δ, 4ε−1ν), (B̃ε(1, 1), Tεδ̃, Tεν̃)) = 0 (2.49)

almost surely. The theorem now follows from Lemma 2.4.5.



CHAPTER 3
Mixing times and Ricci curvature on

the permutation group

Nathanaël Berestycki and Batı Şengül

3.1 Introduction

3.1.1 Main results

Let Sn denote the multiplicative group of permutations of {1, . . . , n}. Let Γ ⊂ Sn be a
fixed conjugacy class in Sn, i.e., Γ = {gτg−1 : g ∈ Sn} for some fixed permutation τ ∈ Sn.
Alternatively, Γ is the set of permutation in Sn having the same cycle structure as σ.
Let Xσ = (X0, X1, . . .) be discrete-time random walk on Sn induced by Γ, started in the
permutation σ ∈ Sn, and let Y σ be the associated continuous time random walk. These
are the processes defined by

Xσ
t = σ ◦ γ1 ◦ · · · ◦ γt; t = 0, 1, . . .

Y σ
t = Xσ

Nt
; t ∈ [0,∞)

(3.1)

where γ1, γ2, . . . are i.i.d. random variables which are distributed uniformly in Γ; and
(Nt, t ≥ 0) is an independent Poisson process with rate 1. Then Y is a Markov chain
which converges to an invariant measure µ as t→∞. If Γ ⊂ An (where An denotes the
alternating group) then µ is uniformly distributed on An and otherwise µ is uniformly
distributed on Sn. The simplest and most well known example of a conjugacy class is the
set T of all transpositions, or more generally of all cyclic permutations of length k ≥ 2.
This set will play an important role in the rest of the paper. Note that Γ depends on n
but we do not indicate this dependence in our notation.

56
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The main goal of this paper is to study the cut-off phenomenon for the random walk
X. More precisely, recall that the total variation distance ‖X − Y ‖TV between two
random variables X, Y taking values in a set S is given by

‖X − Y ‖TV = sup
A⊂S
|P(X ∈ A)− P(Y ∈ A)|. (3.2)

For 0 < δ < 1, the mixing time tmix(δ) is by definition given by

tmix(δ) = inf{t ≥ 0 : dTV (t) ≤ δ}

where
dTV (t) = sup

σ
‖Y σ

t − µ‖TV (3.3)

and µ is the invariant measure defined above.
In the case where Γ = T is the set of transpositions, a famous result of Diaconis

and Shahshahani [21] is that the cut-off phenomenon takes place at time (1/2)n log n

asymptotically as n → ∞. That is, tmix(δ) is asymptotic to (1/2)n log n for any fixed
value of 0 < δ < 1. It has long been conjectured that for a general conjugacy class
such that |Γ| = o(n) (where here and in the rest of the paper, |Γ| denotes the number
of non fixed points of any permutation γ ∈ Γ), a similar result should hold at a time
(1/|Γ|)n log n. This has been verified for k-cycles with a fixed k ≥ 2 by Berestycki,
Schramm, and Zeitouni [12]. This is a problem with a substantial history which will be
detailed below.

The primary purpose of this paper is to verify this conjecture. Hence our main result
is as follows.

Theorem 3.1.1. Let Γ = Γ(n) ⊂ Sn be a conjugacy class, which allowed to vary with n,
and suppose that |Γ| = o(n). Define

tmix :=
1

|Γ|n log n. (3.4)

Then for any ε > 0,

lim
n→∞

dTV ((1− ε)tmix) = 1 and lim
n→∞

dTV ((1 + ε)tmix) = 0. (3.5)

Our main tool for this result is the notion of discrete Ricci curvature as introduced
by Ollivier [37], for which we obtain results of independent interest. We briefly dis-
cuss this notion here; however we point out that this turns out to be equivalent to the
more well-known path coupling method and transportation metric introduced by Bubley
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and Dyer [16] and Jerrum [31] (see for instance Chapter 14 of the book Levin, Peres,
and Wilmer [34] for an overview). However we will cast our results in the language of
Ricci curvature because we find it more intuitive. Recall first that the definition of the
L1-Kantorovitch distance (sometimes also called Wasserstein or transportation metric)
between two random variables X, Y taking values in a metric space (S, d) is given by

W1(X, Y ) := inf E[d(X̂, Ŷ )] (3.6)

where the infimum is taken over all couplings (X̂, Ŷ ) which are distributed marginally as
X and Y respectively. Ollivier’s definition of Ricci curvature of a Markov chain (Xt, t ≥ 0)

on a metric space (S, d) is as follows:

Definition 3.1.2. Let t > 0. The curvature between two points x, x′ ∈ S with x 6= x′ is
given by

κt(x, x
′) := 1− W1(Xx

t , X
x′
t )

d(x, x′)
(3.7)

where Xx
t and Xx′

t denote Markov chains started from x and x′ respectively. The curvature
of X is by definition equal to

κt := inf
x 6=x′

κt(x, x
′).

In the terminology of Ollivier [37], this is in fact the curvature of the discrete-time
random walk whose transition kernel is given by mx(·) = P(Xt = ·|X0 = x). We refer the
reader to Ollivier [37] for an account of the elegant theory which can be developed using
this notion of curvature, and point out that a number of classical properties of curvature
generalise to this discrete setup.

For our results it will turn out to be convenient to view the symmetric group as
a metric space equipped where the metric d is the word metric induced by the set T
of transpositions (we will do so even when the random walk is not induced by T but
by a general conjugacy class Γ). That is, the distance d(σ, σ′) between σ, σ′ ∈ Sn is
the minimal number of transpositions one must apply to get from one element to the
other (one can check that this number is independent of whether right-multiplications or
left-multiplications are used).

For simplicity we focus in this introduction on the case where the random walk is
induced by the transpositions T . (A more general result will be stated later on the
paper). Let c > 0, and let

κc(σ, σ
′) = 1−

W1(Xσ
bcn/2c/, X

σ′

bcn/2c)

d(σ, σ′)
(3.8)

and define κc(σ, σ) = 1. That is, κc(σ, σ′) = κbcn/2c(σ, σ
′) with our notation from (3.7).
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In particular, κc depends on n but this dependency does not appear explicitly in the
notation. It is not hard to see that κc(σ, σ′) ≥ 0 (apply the same transposition to both
walks Xσ and Xσ′). For parity reasons it is obvious that that κc(σ, σ′) = 0 if d(σ, σ′) = 1.
Thus we only consider the curvature between elements of even distance. For c > 0 define

κc = inf κc(σ, σ
′),

where the infimum is taken over all σ, σ′ ∈ Sn such that d(σ, σ′) is even. Our main result
states that κc experiences a phase transition at c = 1. More precisely, the curvature κc is
asymptotically zero for c ≤ 1 but for c > 1 the curvature is strictly positive asymptotically.
In order to state our result, we introduce the quantity θ(c), which is the largest solution
in [0, 1] to the equation

θ(c) = 1− e−cθ(c). (3.9)

It is easy to see that θ(c) = 0 for c ≤ 1 and θ(c) > 0 for c > 1. In fact, θ(c) is nothing else
but the survival probability of a Galton-Watson tree with Poisson offspring distribution
with mean c.

Theorem 3.1.3. Consider the case when Γ is the set of transpositions T . If c ≤ 1,

lim
n→∞

κc = 0 (3.10)

On the other hand, for c > 1

lim inf
n→∞

κc ≥ θ(c)4 (3.11)

and
lim sup
n→∞

κc ≤ θ(c)2 (3.12)

A more general version of this theorem will be presented later on, which gives results
for the curvature of a random walk induced by a general conjugacy class Γ. This will be
stated as Theorem 3.2.2.

We believe that the upper bound is the sharp one here, and thus make the following
conjecture.

Conjecture 3.1.4. For c > 0,
lim
n→∞

κc = θ(c)2.

Of course the conjecture is already established for c ≤ 1 and so is only interesting for
c > 1.
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3.1.2 Relation to previous works and organisation of the paper

Mixing times of Makov chains were initiated independently by Aldous [2] and by Diaconis
and Shahshahani [21]. In particular, as already mentioned, Diaconis and Shahshahani
[21] proved Theorem 3.1.1 in the case where Γ is the set T of transpositions. Their proof
relies on some deep connections with the representation theory of Sn and bounds on
so-called character ratios. The conjecture about the general case appears to have first
been made formally in print by Roichman [42] but it has no doubt been asked privately
before then. We shall see that that the lower bound tmix(δ) ≥ (1/|Γ|)n log n is fairly
straightforward; the difficult part is the corresponding upper bound.

Flatto, Odlyzko, and Wales [29] built on the earlier work of Vershik and Kerov [54]
to obtain that tmix(δ) ≤ (1/2)n log n when |Γ| is bounded (as is noted in Diaconis [20,
p.44-45]). This was done using character ratios and this method was extended further
by Roichman [42, 43] to show an upper bound on tmix(δ) which is sharp up to a constant
when |Γ| = o(n) (and in fact, more generally when |Γ| is allowed to grow to infinity as
fast as (1 − δ)n for any δ ∈ (0, 1)). Again using character ratios Lulov and Pak [36]
shows the cut-off phenomenon as well as tmix = (1/|Γ|)n log n in the case when |Γ| ≥ n/2.
Roussel [44, 45] shows the correct mixing time as well as the cut-off phenomenon for
the case when |Γ| ≤ 6. Finally, in a more recent article Berestycki, Schramm, and
Zeitouni [12], it is shown using coupling arguments that the cut-off phenomenon occurs
and tmix = (1/k)n log n in the case when Γ consists only of cycles of length k for any
k ≥ 2 fixed.

The authors in Berestycki, Schramm, and Zeitouni [12] remark that their proof can
be extended to cover the case when Γ is a fixed conjugacy class and indicate that their
methods can probably be pushed to cover the case when |Γ| = o(

√
n). Their argument

uses very delicate estimates about the mixing time of small cycles, together with a variant
of a coupling due to Schramm [47] to deal with large cycles. The most technical part
of the argument is to analyse the distribution of small cycles. While our approach in
this paper bears some similarities with the paper Berestycki, Schramm, and Zeitouni
[12], we shall see that our use of the L1-Kantorovitch distance (Ricci curvature) allows
us to completely bypass the difficulty of ever working with small cycles. This is quite
surprising given that the small cycles (in particular, the fixed points) are responsible for
the occurrence of the cut-off at time tmix.
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3.2 Curvature and mixing

3.2.1 Curvature theorem

We now start the proof of the main results of this paper. We will show how our bounds on
coarse Ricci curvature imply the desired result for the upper bound on tmix(δ). We first
state the more general version of Theorem 3.1.3 discussed in the introduction. To begin,
we define the cycle structure (k2, k3, . . . ) of Γ to be a vector such that for each j ≥ 2,
there are kj cycles of length j in the cycle decomposition of any σ ∈ Γ (note that this is
the same for any σ ∈ Γ). Then kj = 0 for all j > n and we have that |Γ| = ∑∞j=2 jkj.

In the case for the transposition random walk the quantity θ(c) which appears in the
bounds is the survival probability of a Galton-Watson process with offspring distribution
given by a Poisson random variable with mean c. Our first task is to generalise θ(c). We
do so via a fixed point equation, which is more complex here (and we point out that the
interpretation in terms of survival probability of a certain Galton-Watson process does
not hold in general). Firstly notice that for each j ≥ 2 we have that jkj/|Γ| ≤ 1. Thus
(jkj/|Γ|)j≥2 is compact in the product topology (the topology of pointwise convergence).
Hence by considering the mixing time along convergent subsequences we can assume that
without loss of generality that(

2k2

|Γ| ,
3k3

|Γ| , . . .
)
→ (k′2, k

′
3, . . . ) (3.13)

pointwise as n → ∞. It follows that for each j ≥ 2, k′j ∈ [0, 1] and
∑∞

j=2 k
′
j ≤ 1 by

Fatou’s lemma. For x ∈ [0, 1] and c > 0 define

Ψ(x, c) = exp

{
−c
(

1−
∞∑
j=2

k′j(1− x)j−1

)}
. (3.14)

Note that for each c > 0, x 7→ Ψ(x, c) is convex on [0, 1]. In the case when
∑

j≥2 k
′
j < 1,

the function Ψ(·, c) is not a generating function of a random variable for any c > 0. On
the other hand if

∑
j≥2 k

′
j = 1 then for any c > 0 it is possible to write Ψ(·, c) as the

generating function of a random variable.

Lemma 3.2.1. Define

cΓ :=



(
∞∑
j=2

(j − 1)k′j

)−1

if
∞∑
j=2

k′j = 1

0 if
∞∑
j=2

k′j < 1.

(3.15)
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Then for c > cΓ there exists a unique θ(c) ∈ (0, 1) such that

θ(c) = 1−Ψ(θ(c), c).

For c > cΓ, c 7→ θ(c) is increasing, continuous and differentiable. Further limc↓cΓ θ(c) = 0

and limc↑∞ θ(c) = 1.

Proof. For x ∈ [0, 1] and c > 0 define fc(x) := 1 − Ψ(x, c) − x. There are two cases to
consider. First suppose that z =

∑∞
j=2 k

′
j < 1. Then we have that

fc(0) = 1− e−c(1−z) > 0 and fc(1) = −e−c < 0.

As x 7→ fc(x) is convex on [0, 1] it follows that there exists a unique θ(c) ∈ (0, 1) such
that fc(θ(c)) = 0.

Next suppose that
∑∞

j=2 k
′
j = 1, then

fc(0) = 0 and fc(1) = −e−c < 0

Moreover we have that
d

dx
fc(x)|x=0 = c

∞∑
j=2

(j − 1)k′j − 1.

Hence for c > cΓ we have that d
dx
fc(x)|x=0 > 0 and again by convexity it follows that

there exists a unique θ(c) ∈ (0, 1) such that fc(θ(c)) = 0.
For the rest of the statements suppose that c > cΓ. The fact that c 7→ θ(c) is increasing

follows from the definition of Ψ(x, c) and the fact that θ(c) = Ψ(θ(c), c).
Next we show continuity and differentiability. Define for x ∈ [0, 1] define gc,1(x) =

1 − Ψ(x, c) and for n ≥ 2 define recursively gc,n(x) = 1 − Ψ((fc,n−1(x), c). Then a
simple argument (see Athreya and Ney [5, I.3 Lemma 2] for instance) shows that for any
x ∈ (0, 1) we have that gc,n(x)→ θ(c) as n→∞.

Let δ > 0, then it follows that for any x ∈ (0, 1):

θ(c+ δ)− θ(c) = lim
n→∞

[gn,c+δ(x)− gn,c(x)].

On the other hand we have that uniformly in x ∈ [0, 1],

Ψ(x, c)−Ψ(x, c+ δ) ≤ 1− e−δ

and hence it follows that
θ(c+ δ)− θ(c) ≤ 1− e−δ
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and from this it follows that c 7→ θ(c) is continuous and differentiable on (cΓ,∞).
Notice that θ(c) ∈ [0, 1], hence θ(c) has convergent subsequences as c ↓ cΓ. Let L

denote a subsequential limit of θ(c) as c ↓ cΓ. Then it follows that L solves the equation
L = 1 − Ψ(L, cΓ). This equation has only a zero solution and thus L = 0 and hence
limc↓cΓ θ(c) = 0. The limit as c ↑ ∞ follows from the same argument.

In the case when Γ = T is the set of transpositions we have that k′2 = 1 and k′j = 0

for j ≥ 3, hence Ψ(x, c) = e−cx and thus the definition of θ(c) above agrees with the
definition given in the introduction.

Having introduced the bound θ(c) we now introduce the notion of Ricci curvature we
will use in the general case. Let c > 0, and let

κc(σ, σ
′) = 1−

W1(Xσ
bcn/kc/, X

σ′

bcn/kc)

d(σ, σ′)
(3.16)

where k = |Γ| and define κc(σ, σ) = 1. Then let

κc = inf κc(σ, σ
′),

where the infimum is taken over all σ, σ′ ∈ Sn such that d(σ, σ′) is even. That is,
κc(σ, σ

′) = κbcn/kc(σ, σ
′) with our notation from (3.7). Notice that κc depends on Γ,

which itself depends on n. We have suppressed this dependence in our notation.
We now state a more general form of Theorem 3.1.3 which in particular covers the

case of Theorem 3.1.3.

Theorem 3.2.2. Let Γ ⊂ Sn be a conjugacy class and recall the definition of cΓ from
(3.15). Then for c ≤ cΓ,

lim
n→∞

κc = 0. (3.17)

On the other hand, for c > cΓ

lim inf
n→∞

κc ≥ θ(c)4 > 0 (3.18)

and
lim sup
n→∞

κc ≤ θ(c)2 (3.19)

where θ(c) is the maximal solution in [0, 1] of

θ(c) = 1−Ψ(θ(c), c). (3.20)

where Ψ is given by (3.14).
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3.2.2 Curvature implies mixing

We now show how Theorem 3.2.2 implies Theorem 3.1.1. Again fix ε > 0 and define
t = (1+2ε)(1/k)n log n and let t′ = b(1+ε)(1/k)n log nc where k = |Γ|. The lower bound
is given in an appendix hence we are left to prove that dTV (t)→ 0 as n→∞. For s ≥ 0

let
d̄TV (s) := sup

σ,σ′
‖Xσ

s −Xσ′

s ‖TV ,

where the sup is taken over all permutations at even distances. We first claim that to
show dTV (t)→ 0 as n→∞, it suffices to prove that

d̄TV (t′)→ 0 as n→∞. (3.21)

Indeed, assume that d̄TV (t′) → 0 as n → ∞. Then there are two cases to consider.
Assume first Γ is an even conjugacy class (meaning that Γ ⊂ An). Then Xs ∈ An for all
s ≥ 1 and µ is uniform on An. Then by Lemma 4.11 in Levin, Peres, and Wilmer [34],

sup
σ∈An

‖Xσ
t′ − µ‖TV ≤ 2d̄TV (t′).

Hence Theorem 3.1.1 follows from (3.21) in this case. In the second case, Γ ⊂ Acn. In
this case Xs ∈ An for s even, and Xs ∈ Acn for s odd. Using the same lemma, we deduce
that if s ≥ t′ is even,

‖X id
s − U1‖TV ≤ 2d̄TV (s)

where U1 is uniform on An. However, if s ≥ t′ is odd,

‖X id
s − U2‖TV ≤ 2d̄TV (s)

where this time U2 is uniform on Acn. Let N = (Ns : s ≥ 0) be the Poisson clock of
the random walk Y . Then P(Ns even) → 1/2 as s → ∞, µ = (1/2)(U1 + U2), and
P(Nt ≥ t′)→ 1 as n→∞. Thus we deduce that

‖Y id
t − µ‖TV → 0.

Again, Theorem 3.1.1 follows. Hence it suffices to prove (3.21).
Note that for any two random variables X, Y on a metric space (S, d) we have the

obvious inequality ‖X − Y ‖TV ≤ W1(X, Y ) provided that x 6= y implies d(x, y) ≥ 1 on
S. This is in particular the case when S = Sn and d is the word metric induced by the
set T of transpositions. In other words it suffices to prove mixing in the L1-Kantorovitch
distance.
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By Corollary 21 in Ollivier [37] we have that for each s ≥ 1,

sup
σ,σ′

W1(Xσ
sbcn/kc, X

σ′

sbcn/kc) ≤ (1− κc)s sup
σ,σ′

d(σ, σ′) ≤ n(1− κc)s (3.22)

since the diameter of Sn is equal to n− 1. Solving

n(1− κc)s ≤ δ

we get that

s ≥ log n− log δ

− log(1− κc)
(3.23)

Thus if u = scn/k ≥ sbcn/kc, it suffices that

u ≥ 1

k

c

− log(1− κc)
n(log n− log δ). (3.24)

Now, Theorem 3.1.3 gives

lim inf
n→∞

− log(1− κc) ≥ − log(1− θ(c)4).

Lemma 3.2.3. We have that

lim
c→∞

c

log(1− θ(c)4)
= −1.

Proof. Using L’Hopital’s rule twice we have that

lim
θ↑1

log(1− θ)
log(1− θ4)

= lim
θ↑1

1− θ4

(1− θ)4θ3
= 1.

Next we have that limc→∞ θ(c) = 1 and hence

lim
c→∞

c

log(1− θ(c)4)
= lim

c→∞

c

log(1− θ(c)) = lim
c→∞

c

Ψ(θ(c), c)

= lim
c→∞
− 1

1−∑∞j=2 k
′
j(1− θ(c))j−1

= −1.

Consequently we have that for u ≥ t′ = b(1 + ε)(1/k)n log nc u satisfies (3.24) for
some sufficiently large c > cΓ. Hence lim supn→∞ d̄TV (t′)→ 0, which finishes the proof.
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3.2.3 Stochastic commutativity

To conclude this section on curvature, we state a simple but useful lemma. Roughly, this
says that the random walk is “stochastically commutative". This can be used to show that
the L1-Kantorovitch distance is decreasing under the application of the heat kernel. In
other words, initial discrepancies for the Kantorovitch metric between two permutations
are only smoothed out by the application of random walk.

Lemma 3.2.4. Let σ be a random permutation with distribution invariant by conjugacy.
Let σ0 be a fixed permutation. Then σ0 ◦ σ has the same distribution as σ ◦ σ0.

Proof. Define σ′ = σ0 ◦ σ ◦ σ−1
0 . Then since σ is invariant under conjugacy, the law of σ′

is the same as the law of σ. Furthermore, we have σ0σ = σ′σ0 so the result is proved.

This lemma will be used repeatedly in our proof, as it allows us to concentrate on
events of high probability for our coupling.

3.3 Preliminaries on random hypergraphs

For the proof of Theorem 3.1.1 we rely on properties of certain random hypergraph
processes. The reader who is only interested in a first instance in the case of random
transpositions, and is familiar with Erdős–Renyi random graphs and with the result of
Schramm [47] may safely skip this section.

3.3.1 Hypergraphs

In this section we present some preliminaries which will be used in the proof of Theorem
3.2.2. Throughout we let Γ ⊂ Sn be a conjugacy class and let (k2, k3, . . . ) denote the cycle
structure of Γ. Thus Γ consists of permutations such that in their cycle decomposition
they have k2 many transpositions, k3 many 3-cycles and so on. We assume that (3.13)
is satisfied so that for each j ≥ 2, jkj/|Γ| → k′j as n → ∞. We also let k = |Γ| so that
k =

∑
j≥2 jkj.

We will need some results which are generalise those of Schramm [47]. The framework
which we will use is that of random hypergraphs.

Definition 3.3.1. A hypergraph H = (V,E) is given by a set V of vertices and E ⊂ P(V )

of edges, where P(V ) denotes the set of all subsets of V . An element e ∈ E is called a
hyperedge and we call it a j-hyperedge if |e| = j.
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Consider the random walk X = (Xt, t = 0, 1 . . .) on Sn where Xt = X id
t with our

notations from the introduction. Hence

Xt = γ1 ◦ . . . ◦ γt

where the sequence (γi)i≥1 is i.i.d. uniform on Γ. A given step of the random walk, say
γs, can be broken down into cycles, say γs,1 ◦ . . . γs,k−1 where r =

∑
j kj. We will say that

a given cyclic permutation γ has been applied to X before time t if γ = γs,j for some
s ≤ t and 1 ≤ j ≤ r.

To X we associate a certain hypergraph process H = (Ht : t = 0, 1, . . .) defined as
follows. For t = 0, 1, . . ., Ht is a hypergraph on {1, . . . , n} where a hyperedge {x1, . . . , xj}
is present if and only if the cyclic permutation (x1, . . . , xj) has been applied to the random
walk X prior to time t. For instance, H1 has exactly kj many j-hyperedges for j ≥ 2.
Note that the presence of hyperedges are not independent.

3.3.2 Giant component of the hypergraph

In the case Γ = T , the set of transpositions, the hypergraph Hs is a realisation of an
Erdős-Renyi graph. Analogous to Erdős-Renyi graphs, we first present a result about
the size of the components of the hypergraph process H = (Ht : t = 0, 1, . . . ) (where by
size, we mean the number of vertices in this component). For the next lemma recall the
definition of Ψ(x, c) in (3.14). Recall that for c > cΓ, where cΓ is given by (3.15), there
exists a unique root θ(c) ∈ (0, 1) of the equation θ(c) = 1−Ψ(θ(c), c).

Theorem 3.3.2. Consider the random hyper graph Hs and suppose that s = s(n) is such
that sk/n → c as n → ∞ for some c > cΓ. Then there is a constant β > 0, depending
only on c, such that with probability tending to one all connected components but the
largest have size at most β log(n). Further the size of the largest connected component,
normalised by n, converges to θ(c) in probability as n→∞.

Of course, this is the standard Erdős–Renyi theorem in the case where Γ = T is the
set of transpositions. See for instance Durrett [24], in particular Theorem 2.3.2 for a
proof. In the case of k-cycles with k fixed and finite, this is the case of random regular
hyper graphs analysed by Karoński and Łuczak [32]. For the slightly more general case
of bounded conjugacy classes, this was proved by Berestycki [11].

Remark 3.3.3. Note that the behaviour of Hs in Theorem 3.3.2 can deviate markedly
from that of Erdős–Renyi graphs. The most obvious difference is that Hs can contain
mesoscopic components, something which has of course negligible probability for Erdős-
Renyi graphs. For example, suppose Γ consists of n1/2 transpositions and one cycle of
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length n1/3. Then the giant component appears at time n1/2/2 with a phase transition.
Yet even at the first step there is a component of size n1/3. (However it will follow from
the proof that, in the supercritical phase c > cΓ, such a dichotomy still holds). From a
technical point of view this has nontrivial consequences, as proofs of the existence of a
giant component are usually based on the dichotomy between microscopic components and
giant components. Furthermore, when the conjugacy class is large and consists of many
small or mesoscopic cycles, the hyperedges have a strong dependence, which makes the
proof very delicate.

Proof of Theorem 3.3.2. Suppose that s = s(n) is such that sk/n→ c for some c > cΓ as
n→∞ for some c ≥ 0. We reveal the vertices of the component containing a fixed vertex
v ∈ {1, . . . , n} using breadth-first search exploration, as follows. There are three states
that each vertex can be: unexplored, removed or active. Initially v is active and all the
other vertices are unexplored. At each step of the iteration we select an active vertex w
according to some prescribed rule among the active vertices at this stage (say with the
smallest label). The vertex w becomes removed and every unexplored vertex which is
joined to w by a hyperedge becomes active. We repeat this exploration procedure until
there are no more active vertices.

At stage i = 0, 1, . . . of this exploration process, we let Ai, Ri and Ui denote the
set of active, removed and unexplored vertices respectively. Thus initially A0 = {v},
U0 = {1, . . . , n}\{v} and R0 = ∅.

We will need to keep track of the hyperedges we reveal and where they came from,
in order to deal with dependencies mentioned in Remark 3.3.3. For t = 1, . . . , s we call
the hyperedges which are in Ht but not in Ht−1 the t-th packet. Note that each packet
consists of kj hyperedges of size j, j ≥ 2, which are sampled uniformly at random without
replacement from {1, . . . , n}. However, crucially, hyperedges from different packets are
independent. For t = 1, . . . , s and j ≥ 2 let Y (t)

j (i) be the number of j-hyperedges in the
t-th packet that were revealed in the exploration process, prior to step i. Let i ≥ 0 and
let Hi denote the filtration generated by the exploration process up to stage i, including
the information of which edge came from which packet:

Hi = σ(A1, . . . , Ai, Y
(t)
j (1), . . . , Y

(t)
j (i) : 1 ≤ t ≤ s, j ≥ 2).

Our goal will be to give uniform stochastic bounds on the distribution of |Ai+1 \ Ai|, so
long as i is not too large. We will thus fix i and in order to ease notations we will often
suppress the dependence on i, in Y

(t)
j (i): we will thus simply write Y (t)

j . Note that by
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definition, for each t = 1, . . . , s and j ≥ 2, Y (t)
j ≤ kj and

s∑
t=1

∑
j≥2

Y
(t)
j = n− |Ui| = |Ai|+ i. (3.25)

Let w be the vertex being explored for stage i + 1. For t = 1, . . . , s let Mt be the
indicator that w is part of a hyperedge in the t-th packet. Thus, (Mt)1≤t≤s are independent
conditionally given Hi, and

P(Mt = 1|Hi) =
∑
j≥2

j(kj − Y (t)
j )

|Ui|
(3.26)

If w is part of a hyperedge in the t-th packet, let Vt be the size of the (unique) hyperedge
of that packet containing it. Then

P(Vt = j|Hi,Mt = 1) =
j(kj − Y (t)

j )∑
m≥2

m(km − Y (t)
m )

(3.27)

Note that whenMt = 1 it implies that the denominator above is non-zero and thus (3.27)
is well defined. When Mt = 0 we simply put Vt = 1 by convention. Then we have the
following almost sure inequality:

|Ai+1 \ Ai| ≤ −1 +
s∑
t=1

Mt(Vt − 1). (3.28)

This would be an equality if it were not for possible self-intersections, as hyperedges
connected to w coming from different packets may share several vertices in common. In
order to get a bound in the other direction, we simply truncate the |Ai+1 \ Ai| at n1/4.
Let Ii be the indicator that among the first n1/4 vertices, no such self-intersection occurs.
Note that E(Ii) ≥ pn = 1 − n−1/2, by straightforward bounds on the birthday problem.
We then have

|Ai+1 \ Ai| ∧ n1/4 ≥ −1 + Ii

(
s∑
t=1

Mt(Vt − 1) ∧ n1/4

)
. (3.29)

We will stop the exploration process once we have discovered enough vertices, or if
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the active set dies out, whichever comes first. Therefore we define

T ↑ := inf{` ≥ 1 : |A`|+ ` > 2n2/3}
T ↓ := inf{` ≥ 1 : |A`| = 0}

and we set T = T ↑ ∧ T ↓. The following lemma shows that the distribution of |Ai+1 \ Ai|
converges to a limit in distribution, uniformly for i < T . (Note however that the limit is
improper if

∑
j k
′
j < 1.)

Lemma 3.3.4. There exists some deterministic function w : N→ R such that w(n)→ 0

as n→∞ with the following property. For each x ∈ (0, 1),

sup
i≥1

∣∣∣∣E[x|Ai+1\Ai||Hi]−
Ψ(1− x, c)

x

∣∣∣∣ 1{T>i} ≤ w(n)

almost surely.

Proof. Suppose T > i. In particular, from the definition of T ↑ and (3.25) we have that

s∑
t=1

∑
j≥2

jY
(t)
j ≤ 2n2/3 (3.30)

almost surely. From (3.28) we have that

xE[x|Ai+1\Ai||Hi] ≥ E[x
∑s
t=1Mt(Vt−1)|Hi] =

s∏
t=1

E(xMt(Vt−1)|Hi)

=
s∏
t=1

[
1− P(Mt = 1|Hi)(1− E(xVt−1|Hi,Mt = 1))

]
.

Recall from (3.27) that

E(xVt−1|Hi,Mt = 1) =
∑
j≥2

xj−1
j(kj − Y (t)

j )∑
m≥2

m(km − Y (t)
m )
≥
∑
j≥2

xj−1
j(kj − Y (t)

j )

k

and from (3.26) that

P(Mt = 1|Hi) =
∑
m≥2

m(km − Y (t)
m )

|Ui|
≤
∑
m≥2

mkm
n− 2n2/3

≤ k

n
(1 + 3n−1/3)
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by (3.30). Therefore, using 1− x ≥ e−x−x
2 for all x sufficiently small,

xE[x|Ai+1\Ai||Hi] ≥
s∏
t=1

[
1− k

n
(1 + 3n−1/3)

(
1−

∑
j≥2

xj−1
j(kj − Y (t)

j )

k

)]

≥
s∏
t=1

{
1− k

n

(
1 + 3n−1/3 −

∑
j≥2

xj−1 jkj
k

)
− k

n

∑
j≥2

xj−1
jY

(t)
j

k

}

≥
s∏
t=1

{
1− k

n

(
1−

∑
j≥2

xj−1 jkj
k

)
− 3n−1/3 k

n
− 1

n

∑
j≥2

jY
(t)
j

}

≥ exp

{
−sk

n

(
1−

∑
j≥2

xj−1 jkj
k

)
−O(n−1/3)−O(s

k2

n2
)

}
.

Hence
xE[x|Ai+1\Ai||Hi] ≥ ψ(1− x, c)(1 + w1(n))

where w1(n) vanishes at infinity. For the last inequality we have used that

exp(−c
∑
j

xj−1 jkj
k

)→ exp(−c
∑
j

xj−1k′j) (3.31)

which follows from the dominated convergence theorem, as jkj/k is uniformly bounded
by 1. Note that the above estimate is uniform in i ≥ 1.

For the upper bound, we use (3.29). Let εn → 0 sufficiently slowly that εnn1/3 →∞.
For concreteness take εn = n−1/6. Define

G :=

{
t ∈ {1, . . . , s} :

∑
m≥2

mY (t)
m ≤ εnk

}
,

and let I = Gc. Packets t ∈ I are the bad packets for which a significant fraction of the
mass (at least εn) was already discovered. In the case where the conjugacy class contains
only one type of cycles, say k-cycles, then I coincides with the set of hyperedges already
revealed. At the other end of the spectrum, when the conjugacy class Γ is broken down
into many small cycles, then I is likely to be empty. But in all cases, |I| satisfies the
trivial bound

|I| ≤ n2/3

εnk

by (3.30), and in particular

k|I|
n
≤ 1

εnn1/3
≤ n−1/6 → 0. (3.32)



72 72

This turns out to be enough for our purposes.
Note that E(x

∑s
t=1 Mt(Vt−1)) and E(xn

1/4∧
∑s
t=1 Mt(Vt−1)) can only differ by at most xn1/4 ,

which is exponentially small, so we can neglect this difference. Then we may write,
counting only hyper edges from good packets, using the fact that 1 − x ≤ e−x for all
x ∈ R, and (3.32):

xE[x|Ai+1\Ai||Hi]

≤ 1− E(Ii) + E(Ii)

xn1/4

+
s∏
t=1

1−
k −∑m≥2mY

(t)
m

n

1−
∑
j≥2

xj−1
j(kj − Y (t)

j )

k −
∑
m≥2

mY (t)
m





≤ 2n−1/2 +
∏
t∈G

[
1− k

n
(1− εn)

(
1−

∑
j≥2

xj−1 jkj
k(1− εn)

)]

≤ 2n−1/2 + exp

{
−sk

n
+ (1− εn)

k

n
|I|+ εn

sk

n
+ s

k

n

∑
j≥2

xj−1 jkj
k

}

= 2n−1/2 + exp

{
−sk

n
+
sk

n

∑
j≥2

xj−1 jkj
k

}
(1 + 2cεn + 2n−1/6) (3.33)

≤ Ψ(1− x, c)(1 + w2(n))

where the function w2 : N → R vanish at infinity, invoking again (3.31). The proof is
complete.

We will need the following lemma which tells us the number of vertices in logarithmi-
cally large components, among other things.

Lemma 3.3.5. For any β > 0, We have that

lim
n→∞

P(T ↓ > β log n) = θ(c). (3.34)

Moreover, letting for v ∈ {1, . . . , n} let Cv denote the size of the component containing v

1

n
|{v : |Cv| ≥ β log n}| → θ(c) (3.35)

in probability as n→∞.

Proof. We start with the lower bound of (3.34). For simplicity write θ = θ(c). Let x = xn
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be the solution of the equation

exp

{
−sk

n
+
sk

n

∑
j≥2

xj−1 jkj
k

}
= x.

It is easy to check that xn ∈ (0, 1) is well-defined and xn → 1− θ as n→∞. From (3.33)
we see that

E[x|Ai+1\Ai|
n |Hi] ≤ 1 + w̃(n),

uniformly in i ≤ T for some deterministic function w̃ : N → R such that |w̃(n)| =

O(n−1/6). Consequently,

Mi = x|Ai|n (1 + w̃(n))i, i = 1, . . . , T,

forms a supermartingale. Let Tr = inf{i ≥ 0 : |Ai| ≥ r}. Note that if Tr < T ↓ then
T ↓ > r. Thus if T ↓ < r, then T ↓ < Tr. We apply the optional stopping theorem at
time r ∧ Tr ∧ T ↓, and we bound from below M by considering only its value on the event
{T ↓ < r}, in which case also Tr > T ↓, and hence r ∧ Tr ∧ T ↓ = T ↓. Therefore,

Mr∧Tr∧T ↓ ≥MT ↓1{T ↓<r}

≥ (1 + w̃(n)))r1{T ↓<r}.

Hence
P(T ↓ < r) ≤ (1 + w̃(n))rE(Mr∧Tr∧T ↓) ≤ E(M0) = xn.

Taking r = β log n, and recalling that xn → 1− θ, we deduce that

lim sup
n→∞

P(T ↓ < β log n) ≤ 1− θ

from which the lower bound of (3.34) follows. For the upper bound of (3.34), we make
the following observation. Let m ≥ 1, be finite arbitrary (eventually chosen to be large),
and observe P(T ↓ > β log n) ≤ P(T ↓ > m). Now, let Xi+1 = |Ai+1 \ Ai|. It follows from
Lemma 3.3.4 that (X1, . . . , Xm) converge to i.i.d. random variables (Y1, . . . , Ym) (which
are possibly improper, if

∑
k′j < 1) having as generating function E(xY ) = ψ(1−x, c)/x.

Formally,

Y =

(∑
j

(j − 1) Poisson (ck′j)

)
+

(
∞ · Poisson (c(1−

∑
j

k′j))

)

where the Poisson random variables are independent. Let Si =
∑

j≤i Yi and H = inf{i ≥
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0 : Si = 0}. Then clearly for all m,

lim
m→∞

P(T ↓ ≥ m) = P(H ≥ m)

and thus
lim sup
n→∞

P(T ↓ > β log n) ≤ lim sup
m→∞

P(H > m).

On the other hand the right hand side is easily shown, by standard random walk theory,
to equal θ. Thus the upper bound of (3.34) follows. We now turn to (3.35). Observe
that |Cv| ≥ β log n precisely if T ↓ ≥ β log n, hence if Z =

∑n
v=1 1{|Cv |≥β logn}, we have that

E(Z)/n → θ by (3.34). Hence if we show that V ar(Z) = o(n2) then (3.35) follows by
Chebyshev’s inequality. In particular, it suffices to show that for v 6= w ∈ {1, . . . , n},

lim sup
n→∞

Cov(1{|Cv |≥β logn}, 1{|Cw|≥β logn}) ≤ 0

or equivalently,
lim sup
n→∞

P(|Cv| ≥ β log n, |Cw| ≥ β log n) ≤ θ(c)2 (3.36)

given that we already from (3.34) that P(|Cv| ≥ β log n)→ θ(c). On the other hand, (3.36)
can be proved in exactly the same way as the upper bound of (3.34) above. Details are
left to the reader.

We claim that we can choose x ∈ (0, 1) such that Ψ(1 − x, c)/x < 1. There are two
cases to consider. If

∑
j≥2 k

′
j < 1

ψ(1− x, c) =: z(x) = exp

(
−c+ c

∑
j≥2

xj−1k′j

)
≤ z(1) = exp

(
−c+ c

∑
j≥2

k′j

)
< 1

so the result is trivial. Otherwise, z(1) = 1 and it is not hard to argue that

d

dx
z(x)|x=1 = c

∑
j≥2

(j − 1)k′j > 1

by definition of cΓ and since c > cΓ. By Taylor’s theorem it follows that z(x)/x < 1 for
some 0 < x < 1 sufficiently close to 1.

Hence, using Lemma 3.3.4, for x fixed as above, we can suppose that n is large enough
so that

E[x|Ai+1\Ai||Hi] ≤ (1 + ε)−1 (3.37)

almost surely on {T > i} for some fixed ε > 0.
Step 1. We now fix x as in (3.37) and let r = β log n for some constant β > 0 to be
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chosen later. Our first task is to show that if |Ar| > 0, then it follows that T ↑ < T ↓ with
high probability. If T ↑ < r there is nothing to do so we may assume that T ≥ r. To do
this, let C > 3 log(1/x), we first show that if T ≥ r and |Ar| > 0, then |Ar| > C log n

with high probability.

P(T > r, 0 < |Ar| ≤ C log n) ≤ P(x|Ar| ≥ xC logn;T ≥ r)

≤ E[x|Ar|1{T≥r}]

xC logn

= x−C logn+1E

[
r−1∏
i=0

E[x|Ai+1\Ai|1{T>i}|Hi]

]
≤ x−C logn+1(1 + ε)−β logn.

Thus we can choose β > 0 suitably large so that

P(T > r, 0 < |Ar| ≤ C log n) ≤ n−3.

Step 2. We now show that, under the assumption T > r, T ↓ is unlikely to occur
before T ↑. For i ≥ r, let Mi := x|Ai∧T |(1 + ε)i∧T−r. Then it is not hard to check that
M = (Mi : i = r, . . . , T ) is a supermartingale in the filtration (Hr,Hr+1, . . .). Observe
that necessarily T ≤ 2n2/3 so M is bounded. Suppose that T > r. Note that on the
event {T = T ↓},

MT = (1 + ε)T
↓−r ≥ 1{T=T ↓}

hence by the optional stopping theorem (since M is bounded), on the event {T > r}

P(T = T ↓|Hr) ≤ E(MT1{T=T ↓}|Hr)

≤Mr = x|Ar|.

We deduce that

P
(
T = T ↓ ;T > r

)
≤ E(xC logn; |Ar| > 0) + P(T > r; 0 < |Ar| < C log n)

and hence
P
(
T = T ↓;T > r

)
≤ xC logn + n−3 ≤ 2n−3. (3.38)

Step 3. Note that if T ↑ > T ↓ we have necessarily that |An2/3| > 0 (indeed, recall that
|Ai| + i is monotone as the total number of vertices discovered by stage i). In our third
step we show that if |An2/3| > 0, then with high probability |An2/3 | ≥ Kn2/3 for some
constant K > 0. There are two cases to consider: either T ↑ ≤ n2/3 or T ↑ > n2/3. In the
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first case we have that
|An2/3|+ n2/3 ≥ |A↑T |+ T ↑ ≥ 2n2/3

since |Ai| + i is the number of vertices discovered by stage i and is thus monotone, and
the second inequality is the definition of T ↑. Therefore,

|An2/3| ≥ n2/3

and so the claim is satisfied with K = 1. Thus consider the second case T ↑ < n2/3. Since
we are also assuming that |An2/3| > 0, we may thus assume that T > n2/3. Now

P(|An2/3 | ≤ Kn2/3;T > n2/3) ≤
E[x|An2/3 |1{T>n2/3}]

xKn2/3

= x−Kn
2/3E

n2/3−1∏
i=0

E[x|Ai+1\Ai|1{T>i}|Hi]


≤ (1 + ε)−n

2/3

x−Kn
2/3

.

Let K > 0 be chosen small enough that x−K < 1 + ε, so that the above quantity decays
exponentially in n2/3, and in particular is smaller than n−3 for n sufficiently large. In
either case we see that

P
(
|An2/3| ≤ Kn2/3; |An2/3| > 0

)
≤ n−3.

Step 4. Combining this with (3.38) we get

P
(
|An2/3| ≤ Kn2/3;T > r

)
≤ P(|An2/3| = 0;T > r) + P(|An2/3| ≤ Kn2/3;T > n2/3)

≤ P(T = T ↓;T > r) + n−3

≤ 3n−3.

In particular,
P(|AT∧n2/3| ≤ Kn2/3;T ↓ > r) ≤ 3n−3. (3.39)

Suppose v is a vertex and that |Cv| > β log n = r. Then observe that T ↓ > r.
Accordingly, it is likely that |AT∧n2/3| ≥ Kn2/3 by (3.39). If v′ is another vertex and we
assume that |Cv′| > r, we may likewise explore its component. We seek to show that v
and v′ are likely to be connected. As we explore Cv′ we may find a connection from Cv′
to Cv before time T ∧ n2/3 (in the exploration of Cv′) in which case we are done. Else,
we can repeat the argument above and show that it is likely that the active vertex set
of Cv′ also reaches Kn2/3, at a time T ′ ∧ n2/3, with obvious notations. Let A = AT∧n2/3
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(resp. A′ = A′
T ′∧n2/3) denote the active vertex set of Cv (resp. Cv′) at time T ∧ n2/3 (resp.

T ′ ∧ n2/3). Hence we may assume that A ∩ A′ = ∅ and |A|, |A′| ≥ Kn2/3. We now show
that A and A′ are likely to be connected by making use of the sprinkling technique. That
is, suppose we add s′ packets, with

s′ =

⌈
Dn2/3 log n

k

⌉
for some D > 0 to be chosen later on. Note that s′k/n→ 0 so that (s+s′)k/n→ c. Since
s = s(n) is an arbitrary sequence such that sk/n→ c it suffices to show that v and v′ are
then connected at time s + s′. In fact we will check that A and A′ are connected using
smaller edges that the hyperedges making each packet, as follows. For each hyperedge
of size j we will only reveal a subset of bj/2c edges with disjoint support. This gives
us a total of at least k/2 edges for each packet which are sampled uniformly at random
without replacement from {1, . . . , n}. We will check that a connection occurs between A
and A′ within these s′k/2 edges.

Let us say that A (resp. A′) is left half-vacant by a given (sub)packet if the intersection
of the edges of the pack with A (resp. A′) don’t contain more than Kn2/3/2 vertices, and
call A or A′ half-full otherwise. It is obvious that if A is half-full then the probability for
an edge to join A to A′ tends to one exponentially fast in n2/3, so we restrict to the case
where a given (sub)packet leaves both A and A′ half-vacant. In this case, each edge from
subpacket connects A to A′ with probability at least

(Kn2/3/2)2

(n− k)2
≥ K2

8n2/3
,

independently for each edge within a given (sub)packet, and hence in particular indepen-
dently for all the s′k/2 edges we are adding in total. Consequently, the probability that
no connection occurs during these s′k/2 trials is at most

(
1− K2

8n2/3

)s′k/2
≤ exp

(
− K2

8n2/3

Dn2/3 log n

4

)
= exp

(
−DK

2

32
log n

)
.

For D > 0 sufficiently large this is less than n−3.
Step 5. We are now ready to conclude that vertices are either in small component at

time s or connected at time s+ s′. For v ∈ {1, . . . , n} let Cv(s) denote the the component
containing v at time s and for v, v′ ∈ {1, . . . , n}. Write v ↔ v′ to indicate that v is
connected to v′ and define the good event

G(v, v′) := {v ↔ v′ at time s+ s′} ∪ {|Cv(s)| ≤ β log n} ∪ {|Cv′(s)| ≤ β log n}.
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Altogether we have just shown that P(G(v, v′)c) ≤ 4n−3, since if . Hence we see that by
a union bound

P

 ⋂
v,v′∈{1,...,n}

G(v, v′)

 ≥ 1− 4n−1.

Let V ′ = {v : |Cv(s)| ≥ β log n}. Then by (3.35), we know that |V ′|/n → θ(c) in
probability as n → ∞. Moreover, we see that all the vertices of V ′ are connected with
probability 1− o(1) at time s+ s′. Theorem 3.3.2 follows.

3.3.3 Poisson–Dirichlet structure

The renormalised cycle lengths X(σ) of a permutation σ ∈ Sn is the cycle lengths of σ
divided by n, written in decreasing order. In particular we have that X(σ) takes values
in

Ω∞ := {(x1 ≥ x2 ≥ . . . ) : xi ∈ [0, 1] for each i ≥ 1 and
∞∑
i=1

xi = 1}. (3.40)

We equip Ω∞ with the topology of pointwise convergence. If σn is uniformly distributed
in Sn then X(σn)→ Z in distribution as n→∞ where Z is known as a Poisson–Dirichlet
random variable. It can be constructed as follows. Let U1, U2, . . . be i.i.d. uniform random
variables on [0, 1]. Let Z∗1 = U1 and inductively for i ≥ 2 set Z∗i = Ui(1 −

∑i
j=1 Z

∗
j ).

Then (Z∗1 , Z
∗
2 , . . . ) can be ordered in decreasing size and the random variable Z has the

same law as (Z∗1 , Z
∗
2 , . . . ) ordered by decreasing size.

The next result is a generalisation of Theorem 1.1 in Schramm [47] to the case of
general conjugacy classes. The proof is a simple adaptation of the proof of Schramm and
we provide the details in an appendix.

Theorem 3.3.6. Suppose s = s(n) is such that sk/n → c as n → ∞ for some c > cΓ.
Then we have that for any m ∈ N(

X1(Xs)

θ(c)
, . . . ,

Xm(Xs)

θ(c)

)
→ (Z1, . . . , Zm)

in distribution as n→∞ where Z = (Z1, Z2, . . . ) is a Poisson–Dirichlet random variable.

3.4 Proof of curvature theorem

3.4.1 Proof of the upper bound on curvature

We claim that it is enough to show the upper bound for c > cΓ in (3.19). Indeed, notice
that c 7→ κc is increasing. Let c ≤ cΓ and assume that lim supn→∞ κc′ ≤ θ(c′)2 holds for
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all c′ > cΓ. Then we have that lim supn→∞ κc ≤ θ(c′)2 for each c′ > cΓ. Taking c′ ↓ cΓ

and using the fact that limc↓cΓ θ(c) = 0 shows that limn→∞ κc = 0.
Fix c > cΓ and let t := bcn/|Γ|c. We are left to show (3.19). In other words, we wish

to prove that for some σ, σ′ ∈ Sn

lim inf
n→∞

W1(Xσ
t , X

σ′
t )

d(σ, σ′)
≥ 1− θ(c)2.

We will choose σ = id and σ′ = τ1 ◦ τ2, where τ1, τ2 are independent uniformly chosen
transpositions. To prove the lower bound on the Kantorovitch distance we use the dual
representation of the distance W1(X, Y ) between two random variables X, Y :

W1(X, Y ) = sup{E[f(X)]− E[f(Y )] : f is Lipschitz with Lipschitz constant 1}. (3.41)

Let f(σ) = d(id, σ) be the distance to the identity (using only transpositions, as usual).
Then observe that f is 1-Lipschitz. It suffices to show

lim inf
n→∞

E[f(Xτ1◦τ2
t )]− E[f(X id

t )] ≥ 2(1− θ(c)2). (3.42)

We will now show (3.42) by a coupling argument. Construct the two walks Xτ1◦τ2

and X id as follows. Let γ1, γ2, . . . be a sequence of i.i.d. random variables uniformly
distributed on Γ, independent of (τ1, τ2). Using Lemma 3.2.4 with σ0 = τ1 ◦ τ2, which is
independent of X id, we can construct Xτ1◦τ2

t as

Xτ1◦τ2
t = γ1 ◦ · · · ◦ γt ◦ τ1 ◦ τ2.

Next we couple X id
t by constructing it as

X id
t = γ1 ◦ · · · ◦ γt.

Thus under this coupling we have that Xτ1◦τ2
t = X id

t ◦ τ1 ◦ τ2. Let X = X id, then from
(3.42) the problem reduces to showing

lim inf
n→∞

E[d(id, Xt ◦ τ1 ◦ τ2)− d(id, Xt)] ≥ 2(1− θ(c)2). (3.43)

Either τ1 fragments a cycle of Xt or τ1 coagulates two cycles of Xt. In the first
case, d(id, Xt ◦ τ1) = d(id, Xt ◦ τ1) − 1, and in the second case we have d(id, Xt ◦ τ1) =

d(id, Xt ◦ τ1) + 1. Let F denote the event that τ1 causes a fragmentation. Then

E[d(id, Xt ◦ τ1)− d(id, Xt)] = 1− 2P(F ).
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Using the Poisson–Dirichlet structure described in Theorem 3.3.6 it is not hard to show
that P(F )→ θ(c)2/2 (see, e.g., Lemma 8 in Berestycki [10]). Applying the same reasoning
to Xt ◦ τ1 ◦ τ2 and Xt ◦ τ1 we deduce that

lim
n→∞

E[d(id, Xt ◦ τ1 ◦ τ2)− d(id, Xt)] = 2(1− θ(c)2)

from which the lower bound (3.43) and in turn (3.12) follow readily.

3.4.2 Proof of lower bound on curvature.

We now assume that c > cΓ and turn out attention to the lower bound on the Ricci
curvature, which is the heart of the proof. Throughout we let k = |Γ| and t = bcn/kc.
With this notation in mind we wish to prove that

lim sup
n→∞

sup
σ,σ′

Ed(Xσ
t , X

σ′
t )

d(σ, σ′)
≤ α := 1− θ(c)4

for some appropriate coupling of Xσ and Xσ′ , where the supremum is taken over all σ, σ′

with even distance. Note that we can make several reductions: first, by vertex transitivity
we can assume σ = id is the identity permutation. Also, by the triangle inequality (since
W1 is a distance), we can assume that σ′ = (i, j) ◦ (`,m) is the product of two distinct
transpositions. There are two cases to consider: either the supports of the transpositions
are disjoint, or they overlap on one vertex. We will focus in this proof on the first case
where the support of the transpositions are disjoint; that is, i, j, l,m are pairwise distinct.
The other case is dealt with very much in the same way (and is in fact a bit easier).

Clearly by symmetry Ed(X id
t , X

(i,j)◦(`,m)
t ) is independent of i, j, ` and m, so long as

they are pairwise distinct. Hence it is also equal to Ed(X id
t , X

τ1◦τ2
t ) conditioned on the

event A that τ1, τ2 having disjoint support, where τ1 and τ2 are independent uniform
random transpositions. This event has an overwhelming probability for large n, thus it
suffices to construct a coupling between X id and Xτ1◦τ2 such that

lim sup
n→∞

Ed(X id
t , X

τ1◦τ2
t ) ≤ 2(1− θ(c)4). (3.44)

Indeed, it then immediately follows that the same is true with the expectation replaced
by the conditional expectation given A.

Next, let X be a random walk on Sn which is the composition of i.i.d. uniform
elements of the conjugacy class Γ. We decompose the random walk X into a walk X̃

which evolves by applying transpositions at each step as follows. For t = 0, 1, . . . , write
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out
Xt = γ1 ◦ · · · ◦ γt

where γ1, γ2, . . . are i.i.d. uniformly distributed in Γ. As before we decompose each step
γs of the walk into a product of cyclic permutations, say

γs = γs,1 ◦ . . . ◦ γs,r (3.45)

where r =
∑

j≥2 kj. The order of this decomposition is irrelevant and can be chosen
arbitrarily. For concreteness, we decide that we start from the cycles of smaller sizes and
progressively increase to cycles of larger sizes. We will further decompose each of these
cyclic permutation into a product of transpositions, as follows: for a cycle c = (x1, . . . , xj),
write

c = (x1, x2) ◦ . . . ◦ (xj−1, xj).

This allows to break any step γs of the random walk X into a number

ρ :=
∑
j

(j − 1)kj

of elementary transpositions, and hence we can write

γs = τ (1)
s ◦ · · · ◦ τ (ρ)

s (3.46)

where τ
(j)
s are transpositions. Note that the vectors (τ

(i)
s ; 1 ≤ i ≤ ρ) in (3.46) are

independent and identically distributed for s = 1, 2, . . . and for a fixed s and 1 ≤ i ≤ ρ,
τ

(i)
s is a uniform transposition, by symmetry. However it is important to observe that
they are not independent. Nevertheless, they obey a crucial conditional uniformity which
we explain now. First we have differentiate between the set of times when a new cycle
starts and the set of times when we are continuing an old cycle.

Definition 3.4.1 (Refreshment Times). We call a time s a refreshment time if s is of
the form s = ρ`+

∑m
j=2(j − 1)kj for some ` ∈ N ∪ {0} and m ∈ N\{1}.

We see that s is a refreshment time if the transposition being applied to X̃ at time s
is the start of a new cycle. Using this we can describe the law of the transpositions being
applied to X̃.

Proposition 3.4.2 (Conditional Uniformity). For s ∈ N and i ≤ ρ, the conditional
distribution of τ (i)

s given τ (1)
s , . . . , τ

(i−1)
s can be described as follows. We write τ (i)

s = (x, y)

and we will distinguish between the first marker x and the second marker y. There are
two cases to consider:
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(i) sρ+ i is a refreshment time and thus τ (i)
s corresponds to the start of a new cycle

(ii) sρ+ i is not a refreshment time and so τ (i)
s is the continuation of a cycle.

In case (i) x is uniformly distributed on Si := {1, . . . , n} \ Supp(τ
(1)
s ◦ . . . ◦ τ (i−1)

s ) and y
is uniformly distributed on Si \ {x}. In case (ii) x is equal to the second marker of τ (i−1)

s

and y is uniformly distributed in Si.

Note that in either case, the second marker y is conditionally uniformly distributed
among the vertices which have not been used so far. This conditional independence
property is completely crucial, and allows us to make use of methods (such as that
of Schramm [47]) developed initially for random transpositions) for general conjugacy
classes, so long as |Γ| = o(n). Indeed in that case the second marker y itself is not very
different from a uniform random variable on {1, . . . , n}.

We will study this random walk using this new transposition time scale. We thus define
a process X̃ = (X̃u : u = 0, 1, . . .) as follows. Let u ∈ {0, 1, . . .} and write u = sρ + i

where s, i are nonnegative integers and i < ρ. Then define

X̃u := Xs ◦ τ (1)
s+1 ◦ · · · ◦ τ (i)

s+1. (3.47)

Thus it follows that for any s ≥ 0, X̃sρ = Xs. Notice that X̃ evolves by applying
successively transpositions with the above mentioned conditional uniformity rules.

Now consider our two random walks, X id and Xτ1◦τ2 respectively, started respectively
from id and τ1 ◦ τ2, and let X̃ id and X̃τ1◦τ2 be the associated processes constructed using
(3.47), on the transposition time scale. Thus to prove (3.44) it suffices to construct an
appropriate coupling between X̃ id

tρ and X̃
τ1◦τ2
tρ . Next, recall that for a permutation σ ∈ Sn,

X(σ) denotes the renormalised cycle lengths of σ, taking values in Ω∞ defined in (3.40).
The walks X̃ id and X̃τ1◦τ2 are invariant by conjugacy and hence both are distributed
uniformly on their conjugacy class. Thus ultimately it will suffice to couple X(X̃ id

tρ) and
X(X̃τ1◦τ2

tρ ).
Fix δ > 0 and let ∆ = dδ−9e. Define

s1 = b(cn− δ−9)/kcρ
s2 = s1 + ∆

s3 = tρ.

Our coupling consists of three intervals [0, s1], (s1, s2] and (s2, s3].
Let us informally describe the coupling before we give the details. In what follows we

will couple the random walks X̃ id and X̃τ1◦τ2 such that they keep their distance constant
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during the time intervals [0, s1] and (s2, s3]. In particular we will see that at time s1, the
walks X̃ id and X̃τ1◦τ2 will differ by two independently uniformly chosen transpositions.
Thus at time s1 most of the cycles of X̃ id and X̃τ1◦τ2 are identical but some cycles may be
different. We will show that given that the cycles that differ at time s1 are all reasonably
large, then we can reduce the distance between the two walks to zero during the time
interval (s1, s2]. Otherwise if one of the differing cycles is not reasonably large, then
we couple the two walks to keep their distance constant during the time interval [0, s1],
(s1, s2] and (s2, s3].

More generally, our coupling has the property that d(X id
t , X

τ1◦τ2
t ) is uniformly bounded,

so that it will suffice to concentrate on events of high probability in order to get a bound
on the L1-Kantorovitch distance W (X id

t , X
τ1◦τ2
t ).

Coupling for [0, s1]

First we describe the coupling during the time interval [0, s1]. Let X̃ = (X̃s : s ≥ 0) be a
walk with the same distribution as X̃ id, independent of the two uniform transpositions τ1

and τ2. Then we have that by Lemma 3.2.4 for any s ≥ 0, X̃τ1◦τ2
s has the same distribution

as X̃s ◦ τ1 ◦ τ2. Thus we can couple X(X̃ id
s1

) and X(X̃τ1◦τ2
s1

) such that

X(X̃ id
s1

) = X(X̃s1)

X(X̃τ1◦τ2
s1

) = X(X̃s1 ◦ τ1 ◦ τ2). (3.48)

Coupling for (s1, s2]

For s ≥ 0 define X̄s = X(X̃ id
s+s1

) and Ȳs = X(X̃τ1◦τ2
s+s1 ). Here we will couple X̄s and Ȳs for

s = 0, . . . ,∆. We create a matching between X̄s and Ȳs by matching an element of X̄s to
at most one element of Ȳs of the same size. At any time s there may be several entries
that cannot be matched. By parity the combined number of unmatched entries is an
even number, and observe that this number cannot be equal to two. Now X̃ id

s1
and X̃τ1◦τ2

s1

differ by two transpositions as can be seen from (3.48). This implies that in particular
initially (i.e., at the beginning of (s1, s2]), there are four, six or zero unmatched entries
between X̄0 and Ȳ0.

Fix δ > 0 and let A(δ) denote the event that the smallest unmatched between X̄0

and Ȳ0 has size greater than δ > 0. We will show that on the event A(δ) we can couple
the walks such that X̄∆ = Ȳ∆ with high probability. On the complementary event A(δ)c,
couple the walks so that their distance remains 1 during the time interval (s1, s2], similar
to the coupling during [0, s1].

It remains to define the coupling during the time interval (s1, s2] on the event A(δ).
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We begin by estimating the probability of A(δ).

Lemma 3.4.3. For any c > 1 and δ > 0,

lim inf
n→∞

P(A(δ)) ≥ [θ(c)(1− δ)]4.

Proof. Recall that by construction X̄0 and Ȳ0 only differ because of the two transpositions
τ1 and τ2 appearing in (3.48).

Recall the hypergraph Hs1/ρ on {1, . . . , n} defined in the beginning of Section 3.3.1.
Since c > cΓ, Hs1/ρ has a (unique) giant component with high probability. Let A1

be the event that the four points composing the transpositions τ1, τ2 fall within the
largest component of the associated hypergraph Hs1/ρ. It follows from Theorem 3.3.6
that conditionally on the event A1, A(δ) has probability greater than (1−δ)4. Also, since
the relative size of the giant component converges in probability θ(c) by Lemma 3.3.2, it
is obvious that P(A1)→ θ(c)4 and thus the lemma follows.

Recall that the transpositions which make up the walks X̃ id and X̃τ1◦τ2 obey what
we called conditional uniformity in Proposition 3.4.2. For the duration of (s1, s2] we will
assume the relaxed conditional uniformity assumption, which we describe now.

Definition 3.4.4 (Relaxed Conditional Uniformity). For s = s1 + 1, . . . , s2 suppose we
apply the transposition (x, y) at time s. Then

(i) if s is a refreshment time then x is chosen uniformly in {1, . . . , n},

(ii) if s is not a refreshment time then x is taken to be the second marker of the
transposition applied at time s− 1.

In both cases we take y to be uniformly distributed on {1, . . . , n}\{x}.

In making the relaxed conditional uniformity assumption we are disregarding the
constraints on (x, y) given in Proposition 3.4.2. However the probability we violate this
constraint at any point during the interval (s1, s2] is at most 2(s2− s1)ρ/n = 2∆k/n and
on the event that this constraint is violated the distance between the random walks can
increase by at most (s2−s1) = ∆. Hence we can without a loss of generality assume that
during the interval (s1, s2] both X̃ id and X̃τ1◦τ2 satisfy the relaxed conditional uniformity
assumption.

Now we show that on the event A(δ) we can couple the walks such that X̄∆ = Ȳ∆ with
high probability. The argument uses a coupling of Berestycki, Schramm, and Zeitouni
[12], itself a variant of a beautiful coupling introduced by Schramm [47]. We first introduce
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some notation. Let

Ωn := {(x1 ≥ · · · ≥ xn) : xi ∈ {0/n, 1/n, . . . , n/n} for each i ≤ n and
∑
i≤n

xi = 1}.

Notice that the walks X̄ and Ȳ both take values in Ωn.
Let us describe the evolution of the random walk X̄ = (X̄s : s = 0, 1, . . . ). Suppose

that s ≥ 0 and X̄s = x̄ = (x1, . . . , xn). Now imagine the interval (0, 1] tiled using the
intervals (0, x1], . . . , (0, xn] (the specific tiling rule does not matter). Initially for s = 0

we select u ∈ {1/n, . . . , n/n} uniformly at random and then call the tile that u falls into
marked. Next if s ≥ 1 is not a refreshment time then we keep marked the tile which was
marked in the previous step. Otherwise if s ≥ 1 is a refreshment time we select a new
marked tile by selecting u ∈ {1/n, . . . , n/n} uniformly at random and marking the tile
which u falls into.

Let I be the marked tile. Select v ∈ {2/n, . . . , n/n} uniformly at random and let I ′

be the tile that v falls in. Then if I ′ 6= I then we merge the tiles I and I ′. The new tile
we created is now marked. If I = I ′ then we split I into two tiles, one of size v− 1/n and
the other of size |I| − (v − 1/n). The tile of size v is now marked. Now X̄s+1 is the sizes
of the tiles in the new tiling we have created, ordered in decreasing order.

The evolution of X̄ described above corresponds to the evolution of X as follows.
Suppose we apply the transposition (x, y) to Xs in order to obtain Xs+1. The marked
tile at time s corresponds to the cycle of Xs containing x: if s is a refreshment time
then x ∈ {1, . . . , n} is chosen uniformly, otherwise x is the second marker from the
previous step. Then we write the cycle containing x as (x, x1, . . . , xm) and so the point
x corresponds to 1/n in the tiling. Then we select the second marker y ∈ {1, . . . , n}\{x}
uniformly which corresponds to the selection of the marker v ∈ {2/n, . . . , n/n}.

Before we describe the coupling in detail let us make a remark. In the course of the
coupling there may be several things that may go wrong; for example the size of the
smallest unmatched component may become too small. We will estimate the probability
of such unfortunate events and see that these tend to zero when we take n → ∞ and
then δ → 0. The coupling which we describe keeps the distance between walks X id and
Xτ1◦τ2 bounded by 4, hence we can safely ignore these unfortunate events.

We now recall the coupling of Berestycki, Schramm, and Zeitouni [12]. Let s ≥ 0.
Suppose that X̄s = x̄ = (x1, . . . , xn) and Ȳs = ȳ = (y1, . . . , yn). Then we can differentiate
between the entries that are matched and those that are unmatched: recall that two
entries from x̄ and ȳ are matched if they are of identical size. Our goal will be to create
as many matched parts as possible and as quickly as possible. Let Q be the total mass of
the unmatched parts in either x̄ or ȳ. When putting down the tilings x̃ and ỹ, associated
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with x̄ and ȳ respectively, we will do so in such a way that all matched parts are at the
right of the interval (0, 1] and the unmatched parts occupy the left part of the interval.
Initially for s = 0 suppose that u ∈ {1/n, . . . , n/n} is chosen uniformly and call the tile
that u falls into in each of x̃ and ỹ, marked. As before if s ≥ 1 is not a refreshment
time then we keep marked the tiles which were marked in the previous step. Otherwise
if s ≥ 1 is a refreshment time we select new marked tiles in both x̃ and ỹ by selecting
u ∈ {1/n, . . . , n/n} uniformly at random and marking the tiles which u falls into in each
of x̃ and ỹ.

Let Ix̄ and Iȳ be the respective marked tiles of the tilings x̃ and ỹ, and let x̂, ŷ be
the tiling which is the reordering of x̃, ỹ in which Ix̄ and Iȳ have been put to the left of
the interval (0, 1]. Let a = |Ix̄| and let b = |Iȳ| be the respective lengths of the marked
tiles, and assume without loss of generality that a < b. Let v ∈ {2/n, . . . , n/n} be chosen
uniformly. We will apply v to x̂ as we did in the transition above and obtain X̄s+1. We
now describe how construct an other uniform random variable v′ ∈ {2/n, . . . , n/n} which
will be applied to ŷ. If Ix̄ is matched (which implies that Iȳ is also matched) then we
take v′ = v as in the coupling of Schramm [47]. In the case when Ix̄ is unmatched (which
implies Iȳ is also unmatched) in the coupling of Schramm [47] one again takes v = v′,
here we do not take them equal and apply to v a measure-preserving map Φ, defined as
follows.

For w ∈ {2/n, . . . , n/n} consider the map

Φ(w) =


w if w > b or if 1/n ≤ w ≤ γn + 1/n,

w − γn if a < w ≤ b,

w + b− a if γn + 1/n < w ≤ a,

(3.49)

where γn := dan/2 − 1e/n. It is not hard to check that Φ is measure preserving, thus
letting v′ = Φ(v) we have that v′ has the correct marginal distribution.

If v /∈ Ix̄ then we merge the tile containing v and Ix̄. The new tile is now marked.
If v ∈ Ix̄ we split the tile Ix̄ into two tiles, one of length v − 1/n and one of length
a− (v − 1/n). We mark the tile of size v − 1/n. Now X̄s+1 is the sizes of the tiles in the
new tiling we have created, ordered in decreasing order. We obtain Ȳs+1 from the same
procedure as we did to obtain X̄s+1, but we use v′ instead of v. We give an example of
an evolution under this coupling in Figure 3.1

The somewhat remarkable property of this coupling is that the number of unmatched
entries can only decrease. Unmatched entries disappear when they are coalesced. In par-
ticular they disappear quickly when their size is reasonably large. Hence it is particularly
desirable to have a coupling in which unmatched components stay large. The second
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u v

v′
v

v′

Figure 3.1: The evolution under the coupling between X̄ and Ȳ . The red entries represent the
marked entries.

crucial property of this coupling is that it does not create arbitrarily small unmatched
entries: even when unmatched entry is fragmented, the size of the smallest unmatched
entry cannot decrease by more than a factor of two. This is summarised by the following,
which is Lemma 19 from Berestycki, Schramm, and Zeitouni [12].

Lemma 3.4.5. Let U be the size of the smallest unmatched entry in two partitions x̄, ȳ ∈
Ωn, let x̄′, ȳ′ be the corresponding partitions after one transposition of the coupling, and
let U ′ be the size of the smallest unmatched entry in x̄′, ȳ′. Assume that 2j ≤ U < 2j+1

for some j ≥ 0. Then it is always the case that U ′ ≥ U/2− 1/n, and moreover,

P(U ′ ≤ 2j) ≤ 2j+2/n.

Finally, the combined number of unmatched parts may only decrease.

Remark 3.4.6. In particular, it holds that U ′ ≥ 2j−1/n.

We now explain our strategy. On A(δ) we will expect that the unmatched components
will remain of a size roughly of order at least δ for a while. In fact we will show that they
will stay at least as big as O(δ2) for a long time. Unmatched entries disappear when they
are merged together. If all unmatched entries are of size at least δ2, we will see that with
probability at least δ8, we have a chance to reduce the number of unmatched entries in
every 4 steps. Then a simple argument shows that after time ∆ = dδ−9e, X̄∆ and Ȳ∆ are
perfectly matched with a probability tending to one as δ → 0.

Lemma 3.4.7. There is δ0 such that if δ < δ0, during [0,∆], both X̄s and Ȳs always have
an entry of size greater than δθ(c) with probability at least 1− 2δ1/2 for all n sufficiently
large.

Proof. Let δ0 > 0 be such that (1 − δ0)9! ≥ δ
1/2
0 and assume that δ < δ0. Hence it also

true that (1 − δ)9! ≥ δ1/2. Let Z = (Z1, . . .) be a Poisson-Dirichlet random variable on
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Ω∞ and let (Z∗1 , . . . ) denote the size biased ordering of Y . Recall that Z∗1 is uniformly
distributed over [0, 1], Z∗2 is uniformly distributed on [0, 1−Z∗1 ], and so on. For the event
{Z1 ≤ δ} to occur it is necessary that Z∗1 ≤ δ, Z∗2 ≤ δ/(1− δ), . . . , Z∗10 ≤ δ/(1− δ)9. This
has probability at most δ10/(1−δ)9!. Note that since δ < δ0, we have that (1−δ)9! ≥ δ1/2.
Thus

P(Z1 ≤ δ) ≤ δ10

(1− δ)9!
≤ δ9+1/2.

Summing over ∆ = O(δ−9) steps we see that the expected number of times during the
interval [0,∆] such that X̄s or Ȳs don’t have a component of size at least θ(c)δn is less
than δ1/2 as n→∞ and is thus less than 2δ1/2 for n sufficiently large, by Theorem 3.3.6
(note that we can apply the result because this calculation involves only a finite number
of components). The result follows.

We now check that all unmatched components really do stay greater than δ2 during
[0,∆]. Let Tδ denote the first time s that either X̄s or Ȳs have no cycles greater than
δθ(c)n.

Lemma 3.4.8. On A(δ), for all s ≤ Tδ ∧∆, all unmatched components stay greater than
δ2 with probability at least 1− δ(16/θ(c))10.

Proof. Say that an integer k is in scale j if 2j/n ≤ k < 2j+1/n. For s ≥ 0, let U(s) denote
the scale of the smallest unmatched entry of X̄s, Ȳs. Let j0 be the scale of δ, and let j1

be the integer immediately above the scale of δ2.
Suppose for some time s ≤ Tδ, we have U(s) = j with j1 ≤ j ≤ j0, and the marked

tile at time s corresponds to the smallest unmatched entry. Then after this transposition
we have U(s + 1) ≥ j − 1 by the properties of the coupling (Lemma 3.4.5). Moreover,
U(s + 1) = j − 1 with probability at most rj = 2j+2/n. Furthermore, since s ≤ Tδ, we
have that this marked tile merges with a tile of size at least θ(c)δ with probability at
least θ(c)δ after the transposition. We call the first occurrence a failure and the second
a mild success.

Once a mild success has occurred, there may still be a few other unmatched entries in
scale j, but no more than five since the total number of unmatched entries is decreasing.
And therefore if six mild successes occur before a failure, we are guaranteed that U(s+1) ≥
j+1. We call such an event a good success, and note that the probability of a good success,
given that U(s) changes scale, is at least pj = 1− 6rj/(rj + θ(c)δ). We call qj = 1− pj.

Let {qi}i≥0 be the times at which the smallest unmatched entry changes scale, with
q0 being the first time the smallest unmatched entry is of scale j0. Let {Ui} denote the
scale of the smallest unmatched entry at time qi. Introduce a birth-death chain on the
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integers, denoted vn, such that v0 = j0 and

P(vn+1 = j − 1|vn = j) =


1 if j = j0

0 if j = j1

qj otherwise,
(3.50)

and

P(vn+1 = j + 1|vn = j) =

pj, j > j1

0, j = j1.
(3.51)

Then it is a consequence of the above observations that (Ui, i ≥ 1) is stochastically
dominating (vi, i ≥ 1) for s ≤ Tδ. Set τj = min{n > 0 : vn = j}. An analysis of the
birth-death chain defined by (3.50), (3.51) gives that

Pj0(τj1 < τj0) =
1∑j0

j=j1+1

∏j0−1
m=j

pm
qm

≤
j0−1∏
j=j1+1

qj
pj

(see, e.g., Theorem (3.7) in Chapter 5 of Durrett [23]). Thus, by considering the 10 lowest
terms in the product above (and note that for δ > 0 small enough, there are at least 10

terms in this product), we deduce that Pj0(τj1 < τj0) decays faster than (16δ/θ(c))10.
Since Tδ ∧ ∆ ≤ ∆ = O(δ−9) we conclude that the probability that U(s) = j1 before
Tδ ∧∆ is at most δ(16/θ(c))10.

We are now going to prove that on the event A(δ), after time ∆ there are no unmatched
with probability tending to one as n → ∞ and δ → 0. The basic idea is that there are
initially at most six unmatched parts, and this number cannot increase.

Lemma 3.4.9. We have that for all δ > 0 small enough

lim
δ→0

lim sup
n→∞

P(X̄∆ 6= Ȳ∆|A(δ)) = 0

Proof. Suppose δ > 0 is sufficiently small and condition throughout on the event A(δ).
Let T ′δ be the first time one of the unmatched entries is smaller than δ2 or Tδ, whichever
comes first. By Lemma 3.4.7 and Lemma 3.4.8 we have that for large n,

P(T ′δ ≥ ∆|A(δ)) ≥ 1− δ(16/θ(c))10 − 2δ1/2. (3.52)

Henceforth condition on the event {T ′δ ≥ ∆}. Initially there are at most 6 unmatched
entries. Due to parity there can be either 6, 4 or 0 unmatched entries (note in particular
that 2 is excluded, as a quick examination shows that no configuration can give rise
to two unmatched entries). Furthermore, by the virtue of the coupling the number
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of unmatched entries either remains the same or decreases sequentially. Once all the
entries are matched they remain matched thereon. In order for the unmatched entries to
decrease at time s ∈ {2, . . . ,∆} it must be the case that both X̄s and Ȳs must have at
least 2 unmatched entries. Call this a good configuration. Let Fs be the event that at
time s the configuration is good and one of the two marked tiles at time s is the smallest
unmatched tile.

We now show that P(Fs) ≥ δ4/2 by considering different cases:

• Suppose that at time s − 1 the configuration is good. Then placing the second
marker (v or v′) inside the smallest unmatched tile will guarantee that at time s
the configuration is still good. Suppose without loss of generality that v lands in
the smallest unmatched tile, then it could be the case that at time s−1 the smallest
unmatched tile was marked. In this case the smallest unmatched tile will fragment
into two and the smaller of the two pieces will be matched and the resulting tile
on the left will be marked. If a is the size of the smallest entry and v ∈ [a/2, a]

then both marked tiles at time s will be unmatched and furthermore of them will
correspond to the smallest unmatched entry at time s. Hence the probability that
Fs holds in this case is at least δ2/2.

• Suppose that the configuration at time s − 1 is bad: that is, one copy has one
unmatched entry and the other copy has either three or five unmatched entries.
Suppose, without a loss of generality that X̄s−1 has one unmatched entry which
means that Ȳs−1 has at least three unmatched entries. To get to a good configuration
at time s it suffices to coagulate two of the unmatched entries of Ȳs−1 (as then
automatically, by the properties of the coupling, the single unmatched entry in
X̄s−1 fragments into two). In order for this to happen, the marked tiles at time
s−1 must be unmatched. We force the marked entries at time s−1 to be unmatched
as follows.

– If s − 1 is a refreshment time then we ask that the marker u at time s − 1

falls inside an unmatched tile which is not the smallest unmatched tile. This
happens with probability at least δ2.

– If s− 1 is not a refreshment time then we ask for the marker v and v′ at time
s−2 to fall inside an unmatched tile which is not the smallest unmatched tile.
This happens with probability at least δ2. As before, once the markers v and
v′ fall inside unmatched tiles the probability that the marked tile at time s−1

is unmatched is 1/2.

Suppose now that at s − 1 the marked tiles are unmatched but neither is the
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smallest unmatched tile. If the marker v or the marker v′ at time s− 1 falls inside
the smallest unmatched tile then we are guaranteed that Fs holds and this happens
with probability at least δ2. Hence we see that the probability that Fs holds when
the configuration at time s− 1 is bad is at least δ4/2.

We have just shown that P(Fs) ≥ δ4/2.
Now suppose Fs holds. With probability greater than δ2 we have that one of the

marked tiles at time s is the smallest unmatched tile (in fact the probability is 1 if s is
not a refreshment time). Since there are at least 2 unmatched parts in each copy, let R be
the tile corresponding to a second unmatched tile in the copy that contains the larger of
the two marked tiles. Then |R| > δ2, and moreover when v falls in R, we are guaranteed
that a coagulation is going to occur in both copies hence decreasing the total number of
unmatched entries. Let Ks denote this event and call this a success. Thus we have just
shown that P(Ks|Fs) ≥ δ4.

Notice that for s ∈ {2, . . . ,∆} we have that the marked tiles and the markers (v, v′)

used in the transition from time s + 1 to s + 2 are independent from Fs := σ((X̄`, Ȳ`) :

` ≤ s). Thus we can repeat the same argument as before to obtain that for any s ∈
{1, . . . , b(∆− 1)/4c} we have that P(K4s ∩ F4s|F4s−2) ≥ δ8/2. Hence it follows that the
number of successes before time ∆ stochastically dominates a random variable H which
has the binomial distribution Bin(b(∆−1)/4c, δ8/2). The event that {X∆ 6= Y∆} implies
that there has been at most one success. Thus for δ > 0 small enough

P(X̄∆ 6= Ȳ∆|A(δ) ∩ {T ′δ ≥ ∆}) ≤ P(H ≤ 1) ≤ ∆(1− δ8/2)b(∆−1)/4c.

As ∆ = O(δ−9), the right hand side of the equation above converges to 0 as δ ↓ 0 and
using (3.52) finishes the proof.

Coupling for (s2, s3]

The walks X̃ id and X̃τ1◦τ2 are uniformly distributed on their conjugacy class. Thus one
can couple X̃ id and X̃τ1◦τ2 so that

• on the event A(δ)c we have that d(X̃ id
s2
, X̃τ1◦τ2

s2
) = 2,

• we have that using Lemma 3.4.9

lim inf
δ↓0

lim inf
n→∞

P(X̃ id
s2

= X̃τ1◦τ2
s2
|A(δ)) = 1,

• on the event {X̃ id
s2
6= X̃τ1◦τ2

s2
}, note that the walks X̄ and Ȳ have at most 6 un-

matched entries. Hence there exists a coupling such that d(X̃ id
s2
, X̃τ1◦τ2

s2
) ≤ 4.
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Combining this with Lemma 3.4.3 we have just shown the following lemma.

Lemma 3.4.10. There exists a coupling of X̃ id and X̃τ1◦τ2 such that

lim sup
δ↓0

lim sup
n→∞

E[d(X̃ id
s2
, X̃τ1◦τ2

s2
)] ≤ 2(1− θ(c)4)

The theorem now follows immediately.

Proof of Theorem 3.1.3. It remains to see the coupling during the time interval (s2, s3].
During this time interval we apply the same transpositions to both X̃ id and X̃τ1◦τ2 which
keeps their distance constant throughout (s2, s3]. Thus we have that

d(X id
t , X

τ1◦τ2
t ) = d(X̃ id

s3
, X̃τ1◦τ2

s3
) = d(X̃ id

s2
, X̃τ1◦τ2

s2
).

Thus using Lemma 3.4.10 we see that (3.44) holds which finishes the proof.

3.5 Appendices

3.5.1 Lower bound on mixing

In this section we give a proof of the lower bound on tmix(δ) for some arbitrary δ ∈ (0, 1).
This is for the most part a well-known argument, which shows that the number of fixed
points at time (1− ε)tmix is large. In the case of random transpositions or more generally
of a conjugacy class Γ such that |Γ| is finite, this follows easily from the coupon collector
problem. When |Γ| is allowed to grow with n, we present here a self-contained argument
for completeness.

Let Γ ⊂ Sn be a conjugacy class and set k = k(n) = |Γ|.

Lemma 3.5.1. We have that for any ε ∈ (0, 1),

lim
n→∞

dTV ((1− ε)tmix) = 1

Proof. Let Km ⊂ Sn be the set of permutations which have at least m fixed points.
Recall that µ is the invariant measure, which is a uniform probability measure on Sn or
An depending on the parity of Γ. Let U denote the uniform measure on Sn. Either way,

µ(Km) ≤ 2U(Km).
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Now, U(Km)→∑∞
j=m e

−1 1
j!
as n→∞, hence we deduce that

lim sup
m→∞

lim sup
n→∞

µ(Km) = 0. (3.53)

Fix β > 0 and let

tβ =
1

k
n(log n− log β).

Assume that β is such that tβ is an integer. For each i ≥ 0, γi write N(γi) ⊂ {1, . . . , n}
for the set of non-fixed points of γi. Then we have that for each i ≥ 0, |N(γi)| = k and
further {N(γi)}∞i=1 are i.i.d. subsets of {1, . . . , n} chosen uniformly among the subsets of
size k = |Γ|.

Consider for 1 ≤ i ≤ n the event Ai that the i-th card is not collected by time tβ,
that is i /∈ ⋃tβ

`=1 N(γ`). Thus for 1 ≤ i1 < · · · < i` ≤ n and ` ≤ n− k,

P(Ai1 ∩ · · · ∩ Ai`) =

((
n−`
k

)(
n
k

) )tβ

.

Let N = N(n) ∈ N be increasing to infinity such that N2 = o(n) and N = o(n2k−2).
Then by the inclusion-exclusion formula we have that

P(A1 ∪ · · · ∪ AN) =
N∑
`=1

(−1)`+1

(
n

`

)((n−`
k

)(
n
k

) )tβ

. (3.54)

Writing out the fraction of binomials on the right hand side we have

(
1− k

n− `

)`tβ
≤
((

n−`
k

)(
n
k

) )tβ

≤
(

1− k

n

)`tβ
.

Now −x/(1− x) ≤ log(1− x) ≤ −x for x ∈ (0, 1) thus we have that

exp

(
− `ktβ
n− k − `

)
≤
((

n−`
k

)(
n
k

) )tβ

≤ exp

(
−`ktβ

n

)
. (3.55)

On the other hand we have that

(n− `)`
`!

≤
(
n

`

)
≤ n`

`!
. (3.56)
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Note that ne−tβk/n = β, then combining (3.55) and (3.56) we get

(
1− `

n

)`
exp

(
− k(k + `)`tβ
n(n− k − `)

)
β`

`!
≤
(
n

`

)((n−`
k

)(
n
k

) )tβ

≤ β`

`!
. (3.57)

Let us lower bound the error term on the left hand side of (3.57). First (1 − `/n)` ≥
e−`

2/(n−`), hence it follows that

inf
`≤N

(
1− `

n

)`
exp

(
− k(k + `)`tβ
n(n− k − `)

)
≥ inf

`≤N
exp

(
− `2

n− ` −
k(k + `)`tβ
n(n− k − `)

)
.

It is easy to see that the right hand side above converges to 1 as n→∞. Using this and
(3.57) it follows that

lim
n→∞

N∑
`=1

(−1)`+1

(
n

`

)((n−`
k

)(
n
k

) )tβ

= lim
n→∞

N∑
`=1

(−1)`+1β
`

`!
= 1− e−β.

For integers a < b let Let K[a,b] = Aa+1 ∪ Aa+2 ∪ . . . Ab. Then we have shown

lim inf
n→∞

P(Xtβ ∈ K[1,N ]) ≥ 1− e−β.

Likewise, for any j < bn/Nc,

lim inf
n→∞

P(Xtβ ∈ K[jN,(j+1)N ]) ≥ 1− e−β.

Hence
lim inf
n→∞

P(Xtβ ∈ ∩mj=1K[jN,(j+1)N ]) ≥ 1−me−β.

Let ε > 0. Then for any β > 0, if t = (1− ε)tmix then t < tβ for n sufficiently large, and
hence

lim inf
n→∞

P(Xt ∈ ∩mj=1K[jN,(j+1)N ]) = 1.

But it is obvious that ∩mj=1K[jN,(j+1)N ] ⊂ Km and hence for t = (1− ε)tmix,

lim inf
n→∞

P(Xt ∈ Km) = 1. (3.58)

Comparing with (3.53) the result follows.

3.5.2 Proof of Lemma 3.3.2 for the case of k-cycles

Suppose here that Γ is the set of k-cycles where k = o(n). Note that assumption (3.13)
implies that either k is constant or strictly increasing to infinity. We will be adapting the
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proof of Theorem 2.3.2 in Durrett [24].
Suppose that s = s(n) is such that sk/n → c for some c > cΓ as n → ∞ for some

c ≥ 0. We reveal the vertices of the component containing a vertex v ∈ {1, . . . , n} as
follows. There are three states that each vertex can be: unexplored, removed or active.
Initially v is active and all the other vertices are unexplored. At each step of the iteration
we select an active vertex w according to some prescribed rule (say with the smallest
label). The vertex w becomes removed and every unexplored vertex which joined to w
by a hyperedge becomes active. We repeat this exploration procedure until there are no
more active vertices. At the i-th step of the exploration procedure we let Ai, Ri and Ui
denote the set of active, removed and unexplored vertices respectively. Initially A0 = {v},
U0 = {1, . . . , n}\{v} and R0 = ∅.

Suppose that w is the vertex being explored on the i-the step of the exploration and
letMi(s) = {t ≤ s : w ∈ Supp(γt)}. Consider the set

Ni(s) :=Mi(s)\
i⋃

m=1

Mm(s).

Then we have that |Ai\Ai−1| ≤ (k−1)|Ni(s)|−1. Indeed for each t ∈ Ni(s) we have that
w is a point composing the k-cycle γt. There are k − 1 many other points composing γt
which may be new.

Conditionally on Fi := σ(|A1|, . . . , |Ai|) the probability that t ∈ Ni(s) for some t ≤ s is
at most k/n. Hence it follows that conditionally on Fi, |Ni(s)| is stochastically dominated
by D = (k − 1)M(s) where M(s) is a Binomial(s, k/n). Let S0 = 1 and for i ≥ 1

define Si − Si−1 = Di − 1 where D1, D2, . . . is a sequence of i.i.d. random variables
with distribution D. Hence it follows that we can couple S = (Si : i = 0, 1, . . . ) and
(|Ai| : i = 0, 1, . . . ) so that |Ai| ≤ Si for i ≤ τS := inf{i ≥ 0 : Si = 0}.

Let us now find a random variable which |Ai\Ai−1| stochastically dominates. Fix
δ ∈ (0, 1) small, and condition on the event that for some ` ∈ N we have that |A`| +
` ≤ δn. This implies that |Ui| ≥ (1 − δ)n for each i ≤ ` and that we discovered at
most δn/k many hyperedges by time i. Consequently we have that conditionally on
Fi, |Ni(s)| stochastically dominates M(s − δn/k). Suppose that t ∈ Ni(s) and write
γt = (w, x1, . . . , xk−1). Then it might be the case that {x1, . . . , xk−1} ∩ Ai 6= ∅. However
we have that |Ai| ≤ δn hence conditionally on Fi, |{x1, . . . , xk−1} ∩ Ai| is stochastically
dominated by N with distribution Binomial(k−1, δ). It follows that conditionally on Fi,
|Ai\Ai−1| stochastically dominates D̃ = (k − 1−N)M(s− δn/k).

Let W0 = 1 and for i ≥ 1 define Wi −Wi−1 = D̃i − 1 where D̃1, D̃2, . . . is a sequence
of i.i.d. random variables with distribution D̃. Hence it follows that we can couple
W = (Wi : i = 0, 1, . . . ) and (|Ai| : i = 0, 1, . . . ) so that Wi ≤ |Ai| for i ≤ τ ′ := inf{i ≥
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0 : |Ai| = 0 or |Ai|+ i > δn/k}.
We now follow the four step proof of Theorem 2.3.2 in [24].
Step 1: Suppose that W0 ≥ C log(n/k) for some constant C > 0 to be determined

later. Define T0 := inf{i ≥ 0 : Wi = 0} and for x ∈ [0, 1] let G̃n(x) = E[xD̃], then we
have that

lim
n→∞

G̃n(x) = lim
n→∞

(
1− k

n

(
1− [1− (1− δ)(1− x)]k−1

))s−δn/k
= lim

n→∞
exp

{
−(c− δ)

(
1− [1− (1− δ)(1− x)]k−1

)}
= Ψ((1− δ)(1− x), c− δ).

Suppose that δ > 0 is small enough so that c − δ > cΓ. Then similar to the proof of
Lemma 3.2.1 we have that there exists a y ∈ (0, 1) such that Ψ((1− δ)(1− y), c− δ) < y.
Suppose that n is sufficiently large so that

φn :=
y

G̃n(y)
> 1 + ε

for some ε > 0.
Now we have that Mi := yWiφin is a non-negative martingale, hence by the optional

stopping theorem we have that for any m ∈ N

yC log(n/k) ≥ E[M0] = E[MT0∧m] ≥ E[φT0
n 1{T0≤m}] ≥ P(T0 ≤ m).

Taking m ↑ ∞ we see that P(T0 <∞) ≤ yC log(n/k). Taking C > 3/ log(1/y) we conclude
that

P(T0 <∞|W0 ≥ C log(n/k)) ≤ k3

n3
.

Step 2: Let r = β log(n/k) for some constant β > 0 to be determined later. Suppose
that |Ar| > 0 then the event {|Ar| ≤ r} implies that r < τ ′. Hence it follows that

P(0 < |Ar| ≤ r) ≤ P(Wr ≤ r) = P(yWr ≥ yr)

≤
(
G̃n(y)

y

)r

≤ (1 + ε)−β log(n/k).

Let β > C ∨ 3 log(1 + ε), then we have that P(0 < |Ar| ≤ r) ≤ k3n−3. It follows from
Step 1 that if |Ar| > 0 then with high probability, the lower bounding random walk will
never hit 0.
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Step 3: Let m = n2/3k−2/3, then

P(|Am|+m > δn) ≤ P

(
m∑
i=1

Di ≥ δn

)
≤ E[eD/(k−1)]me−(δn)/(k−1)

=

(
1 +

k

n

(
e1 − 1

))sm
e−δn/(k−1)

≤ κe−δn/k

for some constant κ > 0. Combined with Step 1, we have that if |Ar| > 0 then the coupling
between Wi and |Ai| will be valid for all i ≤ m = n2/3k−2/3 with high probability and
thus P(m > τ ′) = O(e−δn/k). On the other hand suppose that 0 < K < log[(1 + ε)/(1 +

ε/2)]/ log[y], then

P(|Am| ≤ Km|m < τ ′) ≤ P(Wm ≤ Km) = P(yWm ≥ yKm) ≤
(
Gn(y)

yK+1

)m
≤ (1 + ε/2)m.

Thus we see that at time n2/3k−2/3 there are at least Kn2/3k−2/3 many active vertices
with high probability. Suppose now that v, v′ ∈ {1, . . . , n} are vertices such that when
we run two exploration processes, one started at v and one started v′, we find that
both processes at time n2/3k−2/3 have at least Kn2/3k−2/3 active vertices. There are
two possibilities: either the exploration processes intersect by time n2/3k−2/3 or at time
n2/3k−2/3 the set of active vertices for the two processes are disjoint. In the former
situation v and v′ are in the same component. Let us show that in the latter situation
v and v′ are in the same component with high probability. The probability a uniformly
chosen k-hyperedge connects the set of active vertices of v to the set of active vertices of
v′ is at least

2(Kn2/3k−2/3)2

k(k − 1)

(
n−2
k−2

)(
n
k

) ≤ κ′
k2/3

n2/3

for some constant κ′ > 0. On the other hand we know that with high probability there
are at least (1−δ)n unexplored vertices and hence there are at least s−δn/k = (c−δ)n/k
many hyperedges that are unexplored. Hence we see that the probability that there is no
hyperedge connecting the active vertices of v and v′ is at most

(1− κ′k2/3n−2/3)(c−δ)n/k ≤ e−κ
′(c−δ)n1/3k−1/3

.

For v ∈ {1, . . . , n} let Cv denote the size of the component containing v and for
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v, v′ ∈ {1, . . . , n} define

A(v, v′) = {v and v′ are in the same component}∪{Cv ≤ C log(n/k)}∪{Cv ≤ C log(n/k)}.

Altogether we have just shown that

P(A(v, v′)c) ≤ 2k3n−3 + κe−δn/k + e−κ
′(c−δ)n1/3k−1/3

.

Suppose now that v, v′ are such that A(v, v′)c holds. Then it follows that there are
two disjoint hyperedges ev and ev′ such that v ∈ ev and v′ ∈ ev′ . Now we have that
A(w,w′)c holds for any w ∈ ev and w′ ∈ ev′ . Hence

P

 ⋃
(v,v′)∈{1,...,n}2

A(v, v′)

 = P(#{(v, v′) ∈ {1, . . . , n}2 : A(v, v′)c holds} ≥ k2)

≤ k−2E[#{(v, v′) ∈ {1, . . . , n}2 : A(v, v′)c holds}]

=
n2

k2
P(A(v, v′))

= o(1).

Hence we see that with high probability the set of vertices which are in components of
size greater than C log(n/k) are connected.

Step 4: Now it suffices to show that Y (n) := |{v : Cv ≤ C log(n/k)}|/n→ 1− θ(c) in
probability as n→∞. Suppose that W0 = S0 = 1 and let T0 := inf{i ≥ 0 : Wi = 0} and
T ′0 := inf{i ≥ 0 : Si = 0}. Similar to before one can show that Gn(x) = E[xD] converges
point-wise in (0, 1) as n → ∞ to Ψ(1− x, c). Let ρn(c) be the minimal solution in [0, 1]

to the equation ρn(c) = Gn(ρn(c)). Then it is not hard to show that ρn(c)→ 1− θ(c) as
n→∞. Now suppose that n is large so that ρn(c) < 1. Then we have that Mi := ρn(c)Si

is a martingale hence by the optional stopping theorem we have that

P(T ′0 ≤ C log(n/k)) + E[MC log(n/k)1{T ′0>C log(n/k)}] = E[MT ′0∧C log(n/k)] = ρn(c)

and hence for any v ∈ {1, . . . , n},

lim inf
n→∞

P(Cv ≤ C log(n/k)) ≥ lim
n→∞

P(T ′0 ≤ C log(n/k)) = lim
n→∞

ρn(c) = 1− θ(c).

Using a similar argument with T0 yields that lim supn→∞ P(Cv ≤ C log(n/k)) ≤ 1− θ(c−
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δ). As δ > 0 is arbitrary it follows that

lim
n→∞

E[Y (n)] = lim
n→∞

P(Cv ≤ C log(n/k)) = 1− θ(c).

For v ∈ {1, . . . , n} let Yv = 1{Cv≤C log(n/k)} and suppose that Y1 = 1. Then there is a set of
vertices V ⊂ {1, . . . , n} which make up the component containing 1 and |V | ≤ C log(n/k).
The probability that a uniformly chosen k-hyperedge is disjoint from the set V is at least(

1− C log(n/k)

n

)
. . .

(
1− C log(n/k)

n− k + 1

)
≥
(

1− C log(n/k)

n− k

)k
.

Thus the probability that the exploration process started from 2 does not reveal an
element of V is at least(

1− C log(n/k)

n− k

)kC log(n/k)

≥ κ′′e−
kC2 log(n/k)2

n

for some constant κ′′ > 0. Hence it follows that

lim sup
n→∞

Var(Y (n)) ≤ lim sup
n→∞

n−2

(
n+

(
n

2

)
(1− κ′′e− kC

2 log(n/k)2

n )

)
= 0.

Thus it follows from Chebychev’s inequality that for any η > 0

lim sup
n→∞

P(|Y (n)−(1−θ(c))| > η) = lim sup
n→∞

P(|Y (n)−E[Y (n)]| > η) ≤ lim sup
n→∞

Var(Y (n))

η2
= 0.

3.5.3 Proof of Theorem 3.3.6

Let Γ ⊂ Sn be a conjugacy class with cycle structure (k2, k3, . . . ). Let X = (Xt : t =

0, 1, . . . ) be a random walk on Sn which at each step applies an independent uniformly
random element of Γ. Let ρ =

∑
j(j−1)kj and let X̃ be the transposition walk associated

to the walk X using (3.47). In particular for t ≥ 0, X̃tρ = Xt. Finally let Z = (Z1, Z2, . . . )

denote a Poisson–Dirichlet random variable.
For convenience we restate Theorem 3.3.6 here.

Theorem 3.5.2. Let s ≥ 0 be such that sk/(nρ) → c for some c > cΓ. Then for each
m ∈ N we have that as n→∞,(

X̄1(X̃s)

θ(c)
, . . . ,

X̄m(X̃s)

θ(c)

)
→ (Z1, . . . , Zm)

in distribution where θ(c) is given by (3.20).
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The proof of this result is very similar to the proof of Theorem 1.1 in Schramm [47].
We give the details here.

Recall the hypergraph process H = (Ht : t = 0, 1, . . . ) associated with the walk X
defined in Section 3.3.1. Analogously let G̃ = (G̃t : t = 0, 1, . . . ) be a process of graphs
on {1, . . . , n} such that the edge {x, y} is present in G̃t if and only if the transposition
(x, y) has been applied to X̃ prior to and including time t. Hence we have that for each
t = 0, 1, . . . , G̃tρ = Ht.

Recall that X̃ satisfies conditional uniformity as described in Proposition 3.4.2. Using
the graph process G̃ above and the conditional uniformity of X̃ the following lemma,
which is the analogue of Lemma 2.4 in Schramm [47], follows almost verbatim from
Schramm’s arguments.

Lemma 3.5.3. Let s ≥ 0 be such that sk/(nρ)→ c for some c > cΓ and let ε ∈ (0, 1/8).
Let M = M(ε, n, s) be the minimum number of cycles of X̃s which are needed to cover at
least (1−ε) proportion of the vertices in the giant component of G̃s. Then for α ∈ (0, 1/8)

we have that
lim sup
n→∞

P(M > α−1| log(αε)|2) ≤ Cα

for some constant C which does not depend on α nor ε.

Henceforth fix some time s ≥ 0 such that sk/(nρ)→ c for some c > cΓ. Fix ε ∈ (0, 1/8)

and define

∆ := bε−1c
s0 := s−∆.

For t = 0, . . . ,∆ define X̄t = X(X̃s0+t). We can assume that for t ≤ ∆, X̃s0+t satisfies
the relaxed conditional uniformity assumption described in Definition 3.4.4. Indeed by
making this assumption we are disregarding the constraint on the transpositions described
in Proposition 3.4.2 applied to X̃t for t = s0, . . . , s. However the probability that we
violate this constraint is at most 2∆k/n.

Colour an element of X̄0 = X(X̃s0) green if the cycle whose renormalised cycle length
is this element lies in the giant component of G̃s0 . We colour all the other elements of
X̄0 red. Thus asymptotically in n, the sum of the green elements is θ(c) and the sum of
the red elements is 1 − θ(c). In the evolution of (X̄t : t = 0, 1, . . . ) we keep the colour
scheme as follows. If an element fragments, both fragments retain the same colour. If
we coagulate two elements of the same colour then the new element retains the colour of
the previous two elements. If we coagulate a green element and a red element, then the
colour of the resulting element is green.
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Define X̄ ′ = (X̄ ′t : t = 0, . . . ,∆) and X̄ ′′ = (X̄ ′′t : t = 0, . . . ,∆) as follows. Initially
X̄ ′0 = X̄ ′′0 = X̄0. Apply the same colouring scheme to X̄ ′ and X̄ ′′ as we did to X̄. Each
step evolution is described as follows. Then the walks evolve as follows.

• X̄ ′t: Evolves the same as X̄ except we ignore any transition which involves a red
entry.

• X̄ ′′t : Evolves the same as X̄ ′ except that the markers u, v used in the transitions of
X̄ ′′ are distributed uniformly on [0, 1].

Lemma 3.3.2 states that the second largest component of G̃s0 has size o(n). Hence,
initially each red element has size o(1) as n→∞. Now ∆ does not increase with n, hence
for any s = 0, 1, . . . ,∆, we are unlikely to make a coagulation (or fragmentation) in X̄ ′s
without coagulating (or fragmenting) entries of X̄s of similar size. Similar considerations
for the processes X̄ ′ and X̄ ′′ leads to the following lemma.

Lemma 3.5.4. There exists a coupling between the walks X̄ and X̄ ′, and between X̄ ′ and
X̄ ′′ such that for each η > 0,

lim
n→∞

P
(

sup
i∈N
|X̄i(∆)− X̄ ′i(∆)| > η

)
= lim

n→∞
P
(

sup
i∈N
|X̄ ′i(∆)− X̄ ′′i (∆)| > η

)
= 0.

Using the preceding lemma, it suffices now to find an appropriate coupling between
X̄ ′′ and Z. To do this we modify Schramm’s coupling in Schramm [47]. First we let
{J1, . . . , JL} be the set of times s ∈ {0, . . . ,∆} such that that X̄ ′′s−1 6= X̄ ′′s . It is easy
to see that limn→∞ P(L >

√
∆) = 1 and henceforth we will condition on the event that

{L >
√

∆} and set ∆′ = b
√

∆c. Define a process Ȳ = (Ȳt : t = 0, . . . ,∆′) as follows.
Initially Ȳ0 = X̄ ′′0 . For t = 1, . . . ,∆′ we let Ȳt be X ′′Jt renormalised so that

∑
i Ȳi(t) = 1

where Ȳi(t) is the i-th element of Ȳt.
We define a process Z̄ = (Zt : t = 0, 1, . . . ,

√
∆) as follows. Initially Z0 has the

distribution of a Poisson–Dirichlet random variable, independent of Ȳ . Then for t =

1, . . . ,∆′ define Z̄t by applying the coupling in Section 3.4.2 to Ȳ and Z̄ but with the
following modifications:

• the markers u, v ∈ [0, 1] are taken uniformly at random,

• we always take v′ = v,

• we modify the definition of a refreshment time: s is a refreshment time if either
Js−1 + 2 ≤ Js or Js + s0 is a refreshment time in the sense of Definition 3.4.1,

• when a marked tile of size a fragments, it creates a tile of length v and a tile of
length a− v. We mark the tile of length a− v.
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It is not hard to check that the Poisson–Dirichlet distribution is invariant under this
evolution and hence we have that for each t = 0, 1, . . . ,∆′, Zt has the law of a Poisson–
Dirichlet.

Our coupling agrees with the coupling in Schramm [47, Section 3] when Γ = T is the
set of all transpositions. In this case each time s is a refreshment time and hence the
marked tile at time s is always chosen by the marker u. One can adapt the arguments
in Chapter 3 of Schramm’s paper to our case by using the following idea. Note first that
all the estimates of Schramm apply at s when s is a refreshment time. When s is not
a refreshment time and Schramm considers the event that the marker u at time s falls
inside an unmatched tile, instead we consider the event that the marker v at time s− 1

falls inside an unmatched tile. By the properties of the coupling, this guarantees that at
time s the marked tile is unmatched.

Adapting Schramm’s arguments leads to the following lemma, which is the analogue
of Schramm [47, Corollary 3.4].

Lemma 3.5.5. Define

N0 := #{i ∈ N : Ȳi(0) > ε}+ #{i ∈ N : Z̄i(0) > ε}

and let

ε̄ := ε+
∞∑
i=1

Ȳi(0)1{Ȳi(0)<ε} +
∞∑
i=1

Z̄i(0)1{Z̄i(0)<ε}.

Define the event

B =

{
ε̄4/5 ≤ 1

∆′
≤ ε̄1/5

N0 ∨ 1

}
.

Let q ∈ {1, . . . ,∆′} be distributed uniformly, independent of the processes Ȳ and Z̄. Then
we have that for each ρ > 0,

P(sup
i∈N
|Ȳi(q)− Z̄i(q)| > ρ) ≤ C

P(B)

ρ log ∆′

for some constant C > 0.

Using Lemma 3.5.5 it suffices to show that P(B)/ log ∆′ → 0 as ε ↓ 0. The following
lemma shows a stronger result.

Lemma 3.5.6. Suppose that B is defined as in Lemma 3.5.5, then

lim
ε↓0

P(B) = 1.
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Proof. Let

B1 :=

{
ε̄4/5 ≤ 1

2
ε1/2
}

B2 :=

{
2ε1/2 ≤ ε̄1/5

N0 ∨ 1

}
Now as (1/2)ε−1/2 ≤ ∆′ ≤ 2ε−1/2 we have that B ⊃ B1 ∩ B2. First let us bound P(Bc1).
Note that on the event Bc1 we have that ε̄ > 2−5/4ε5/8. Note that a size biased sample
from a Poisson–Dirichlet random variable has a uniform law on [0, 1]. Hence it follows
that

E

[
∞∑
i=1

Z̄i(0)1{Z̄i(0)<ε}

]
= ε

and thus

P

(
∞∑
i=1

Z̄i(0)1{Z̄i(0)<ε} > ε5/6

)
≤ E

[∑∞
i=1 Z̄i(0)1{Z̄i(0)<ε}

]
ε5/6

≤ ε1/6.

Next consider the random variable M in Lemma 3.5.3 at time s0 = s−∆ where we recall
that Ȳ (0) = X(X̃s0). We have that

∞∑
i=1

Yi(0)1{Ȳi(0):Ȳi(0)<ε} ≤ ε(M + 1)

Then applying Lemma 3.5.3 at time s0 we have that

P

(
∞∑
i=1

Ȳi(0)1{Ȳi(0)<ε} > ε5/6

)
≤ P(M > ε−1/5) ≤ Cε1/6

for some constant C > 0. Hence it follows that for ε > 0 small

P(Bc1) = P(ε̄ > 2−5/4ε5/8) ≤ P(ε̄ > ε5/6) ≤ ε1/6 + Cε1/6.

which shows that P(B1)→ 1 as ε ↓ 0.
Now we bound P(Bc2). Firstly we use the bound ε̄ ≥ ε and so we are left to bound N0

from above. Using the stick breaking construction of Poisson–Dirichlet random variables
(see for example [10, Definition 1.4]) one can show that

P
(
# {i ∈ N : Zi(0) > ε} > ε−1/4

)
≤ C ′ε
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for some constant C ′ > 0. On the other hand we have that

# {i ∈ N : Yi(0) > ε} ≤M

and hence using Lemma 3.5.3 we obtain

P
(
# {i ∈ N : Yi(0) > ε} > ε−1/4

)
≤ C ′′ε1/5

for some constant C ′′ > 0. Hence it follows that P(Bc2) ≤ C ′ε+C ′′ε1/5 and the result now
follows.

Theorem 3.5.2 now follows from Lemma 3.5.4, Lemma 3.5.5 and Lemma 3.5.6.
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