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Abstract

The aim of this paper is to introduce the reader into Lévy Processes in a formal and rigorous
manner. The paper will be analysis based and no probability knowledge is required, thought
it will certainly be a tough read in this case. We aim to prove some important theorems that
define the structure of Lévy Processes.

The first two chapters are to reacquaint the reader with measure theory and characteristic
functions, after which the topic will swiftly move on to infinitely divisible random variables.
We will prove the Lévy canonical representation. Then we will go on to prove the existence
of Brownian motion and some properties of it, after which we will briefly talk about Poisson
processes and measures.

The final chapter is dedicated to Lévy processes in which we will prove three important the-
orems; Lévy-Khintchine representation, Lévy-Ito decomposition and the points of increase for
Lévy processes.

Keywords:Brownian Motion, Poisson Processes, Lévy Processes, Infinitely Divisible Distribu-
tions, Lévy-Itô Decomposition, Lévy-Khintchine Representation, Points of Increase
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Introduction

The study of Lévy processes began in 1930 though the name did not come along until later in
the century. These processes are a generalisation of many stochastic processes that are around,
prominent examples being Brownian motion, the Cauchy process and the compound Poisson
process. These have some common features; they are all right continuous and have left limits,
and they all have stationary independent increments. These properties give a rich underlying
understanding of the processes and also allow very general statements to be made about many
of the familiar stochastic processes.

The field owes many things to the early works of Paul Lévy, Alexander Khintchine, Kiyosi Itô
and Andrey Kolmogorov. There is a lot of active research in Lévy processes, and this paper will
lead naturally to subjects such as fluctuation theory, self similar Markov processes and Stable
processes.

We will assume no prior knowledge of probability throughout the paper. The reader is
assumed to be comfortable with analysis, and in particular Lp spaces and measure theory. The
first chapter will brush over these as a reminder.

Notation

xn ↓ x will denote a sequence x1 6 x2 6 ... such that xn → x and similarly xn ↑ x will denote
x1 > x2 > ... with xn → x. x+ will be shorthand for limy↓x y and x− will mean limy↑x y. By
R+ we mean the set of non-negative real numbers and R = R ∪ {∞,−∞} is the extended real
line. We will also be using the convention that inf ∅ = ∞.

We will denote the power set of a set Ω by P(Ω). The order (or usual) topology on R is
the topology generated by sets of the form (a, b). We will often abbreviate limit supremums,
lim supnAn := limn↑∞ supk>nAn. The notation ∂B where B is a set will be used to mean the
boundary of B.

A càdlàg (continue à droite, limitèe à gauche) function is one that is right continuous with
left limits. Unless specified otherwise, we will follow the convention that N , L, B (or W ) will
be Poisson, Lévy, and Wiener processes respectively. We will use X when we are talking about
a general process or random variable.
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Chapter 1

Preliminaries

“ The theory of probability as a mathematical discipline can and should be developed
from axioms in exactly the same way as geometry and algebra. ”

-Andrey Kolmogorov

1.1 Measure Theory

The aim of this chapter is to familiarise the reader with the aspects of measure theory. We will
not rely heavily on measure theory in this paper, it is, however, essential to get a basic grasp of
the concept in order to do probability.

Definition 1.1.1. A σ-algebra F on a set Ω is a collection of subsets of Ω such that,

(i) ∅ ∈ F and Ω ∈ F

(ii) A ∈ F =⇒ Ac ∈ F

(iii) {An}n∈N ⊂ F =⇒
⋃
n∈N An ∈ F .

We call the pair (Ω,F ) a measurable space.

From this we can use de Morgan’s laws to deduce that a σ-algebra is also closed under
countable intersection. The elements of a σ-algebra can be viewed as events, Ω being the complete
event (in the sense that it is the event “something happens”). It is clear that if we have an event
A, then we also have an event of A not not happening. Finite intersection and union may also be
justified in terms of events, the sole reason for the countable union and intersections are however,
for the purpose of analysis.

A simple question would be on how to obtain a σ-algebra from a given collection of subsets.

Proposition 1.1.2. Let T be a collection of sets of Ω, then there exists a smallest σ-algebra B
such that T ⊂ B.

Proof. Take the intersection of all the σ-algebras that contain T (there is at least one σ-algebra,
namely P(Ω)). This intersection is also a σ-algebra (a fact that the reader may want to confirm
for themselves) and thus the smallest containing T .

Definition 1.1.3. A Borel set B ∈ B(X) is an element of the smallest σ-algebra onX, generated
by a specified topology on X.

Note that we will mainly be dealing with B(Rd) where we will take the usual order topology
on Rd. In the case of R we may generate the Borel sets by sets of the form (a, b] or (a, b) or
even (−∞, a). These will all generate the same σ-algebra due to properties (ii) and (iii) of a
σ-algebra.

We wish to somehow assign a likelihood to each event. To do so we must define a map on
the σ-algebra to the reals.

Definition 1.1.4. A measure on a measurable space (Ω,F ) is a function µ : F → R+ such
that if A1, A2, ... are disjoint elements of F then 1

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

1We do not exclude the possibility that some sets may have an infinite measure.
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A finite measure is a measure µ such that µ(Ω) <∞ and a σ-finite measure is a measure µ
such that for each {Ωn}∞n=1 with Ωn ↑ Ω, we have µ(Ωn) <∞ for each n ∈ N.

A probability measure P is a measure with P(Ω) = 1.

Definition 1.1.5. A measure space (Ω,F , µ) is a measurable space (Ω,F ) with a measure µ
defined on it.

A probability space (Ω,F ,P) is a measurable space (Ω,F ) with a probability measure P
defined on it.

A µ-null set of a measure space is a set A ∈ F such that µ(A) = 0. We will sometimes call
it null sets where the measure is obvious from the context.

In a measure space a property holds almost everywhere if the points in which a property does
not hold are the µ-null sets. In probability spaces this is also known as almost surely which is
the same statement as saying the event happens with probability one.

Definition 1.1.6. We say that A,B ∈ F are independent on a probability space (Ω,F ,P) if
P(A ∩B) = P(A)P(B).

Now we look at a basic theorem about measures.

Theorem 1 (Monotone Convergence Theorem for Measures). Suppose that (Ω,F , µ) is a mea-
sure space and {Bn}∞n=1 ⊂ F is a sequence of sets that converge to B, then

µ(B) = lim
n→∞

µ(Bn).

The term we shall use is infinitely often, abbreviated to i.o. This is a shorthand way of saying
lim sup, i.e. An i.o = lim supnAn. The reason for this terminology is that an element of the
lim sup must occur in infinitely many sets of An.

Using the Monotone Convergence Theorem, we will prove a very important theorem. This
will be in heavy use in dealing with Brownian motion when we prove things to do with limits.

Theorem 2 (Borel-Cantelli Lemma). On a probability space (Ω,F ,P) let A1, A2, ... ∈ F then

if
∞∑
n=1

P(An) <∞ then P(lim supnAn) = 0.

Proof. Notice that lim supAn = ∩∞i=1∪∞n=iAn. Define Bi = ∪∞n=iAn. Now from the subadditivity
of the measure we have that P(Bi) 6

∑∞
n=i P(An). By the assumption

∑∞
n=1 P(An) < ∞

therefore P(Bi) → 0 as i→∞. Hence as n→∞, P(∩ni=1Bi) → P(∩∞i=1Bi) = 0 by the Monotone
Convergence Theorem.

Now that we have a framework for probability, we need to look at more interesting things
than just events. The following is a formal definition of a random variable.

Definition 1.1.7. A function f is said to be measurable if f : Ω → Y where (Ω,F ) is a
measurable space, Y is a topological space and for any open set U ⊂ Y we have that f−1(U) ∈ F .

Definition 1.1.8. A random variable X on a probability space (Ω,F ,P) is a measurable func-
tion.

Note that this is a very general definition. In all the cases, the random variables will be
Rd valued, that is they will map to Rd with the usual topology. Measurability is an important
concept as this allows us to assign probabilities to random variables.

Measurability is not really as strong as we like. Sets such as (a, b] are not open in R, hence
we do not know if the pre-image of these are in the σ-algebra. The next definition will become
very useful for us.
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Definition 1.1.9. A function is said to be Borel measurable if f : Ω → Y where (Ω,F ) is
a measurable space, Y is a topological space and for any Borel set B ∈ B(Y ) we have that
f−1(B) ∈ F .

We will always be assuming our random variables are Borel measurable.
Notice that a random variable X acts as a measure on (Rd,B(Rd)) by the composition

µ ◦X−1 as X−1 : B(Rd) → F and µ : F → R. This is known as the distribution or law of X.
Now we introduce some probabilistic abuses of notation which usually is the most confusing

part of probability. For a random variable X, P(X ∈ B) is shorthand for P(X−1(B)) where
B ∈ B(Rd). The distribution unless otherwise specified will be denoted by P(X ∈ dx).

The following are some examples of some important random variables. These will play an
important role later on so it is essential to become familiar with them.

Example 1.1.10. An Rd valued Normal or Gaussian random variable2 X on (Ω,F ,P) has a
distribution of the form

P(X ∈ dx) =
1√

(2π)d/2|Σ| 12
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dx

where µ ∈ Rd and Σ is a positive definite real d× d matrix. It is denoted Nd(µ,Σ)
In the case of R (which we will be using) it is of the form,

1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
dx

where µ, σ ∈ R. This is denoted N(µ, σ2).

We can also have discrete measure spaces which gives rise to discrete random variables.

Example 1.1.11. A Poisson random variable N is a discrete random variable on a discrete
measure space (Ω,F ,P). It can be described by,

P(N ∈ {k}) =
e−λλk

k!

where λ > 0 and is called the parameter. The measure of the Poisson random variable is atomic,
that is, it assigns values to singleton sets. A Poisson random variable with parameter λ is
commonly denoted Pois(λ)

We can also collect together random variables to model how something is evolving with time.
This yields the next definition.

Definition 1.1.12. A stochastic process is a family of random variables {Xt, t ∈ I}.

Examples of stochastic processes will be the main concern over the next few chapters of the
paper.

1.2 Integration

We will brush over some integration theory, for a detailed outline the reader is referred to Ash
(1972) or Billingsley (1979) which are two of the many books that deal with this subject. The
next theorem will become useful later on when we look at integration over product spaces. The
theorem will not be proved, a proof can be found in any modern probability or measure theory
book.

2This is usually called the multivariate normal distribution
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Theorem 3 (Fubini’s Theorem). Suppose that (Ω1,F1, µ1) and (Ω2,F2, µ2) are measure spaces
and define a σ-algebra on Ω = Ω1 × Ω2 by F = F1 ⊗ F2 and a measure by µ = µ1 ⊗ µ2. If
f : Ω → R+ is a measurable function then the function F : Ω1 → R+ defined by

F (x) =
∫

Ω2

f(x, s)µ2(ds)

is a measurable function and∫
Ω

fdµ =
∫

Ω1

∫
Ω2

f(x, y)µ2(dy)µ1(dx) =
∫

Ω2

∫
Ω1

f(x, y)µ1(dx)µ2(dy).

Now we define some central operators on probability spaces.

Definition 1.2.1. An expectation of a random variable X on Rd, denoted E[X] is defined by,

E[X] =
∫

Rd

xP(X ∈ dx).

The co-variance of two random variables X,Y on Rd is defined as,

Cov(X,Y ) = E[(E[X]−X)(E[Y ]− Y )].

The variance of X is V ar(X) = Cov(X,X).

Intuitively, expectation is what is usually referred to by people as average. Variance is the
amount by which the random variable is spread around the mean. Low variance means that
the spread is tight around the mean. Notice that E is a linear function and also if two random
variables are independent, then they have zero covariance.

Example 1.2.2. A N(µ, σ2) random variable X has E[X] = µ and V ar(X) = σ2. Moreover if we
have Y on the same space which is N(0, σ′2) and µ = 0, then,

Cov(X,Y ) = E[XY ] = σ2 ∧ σ′2.

An important property of the normal distribution is that two normal random variables are
independent if and only if they have zero covariance.

1.3 Convergence

In probability we have three main modes of convergence for random variables.

Definition 1.3.1. Let {X}∞n=1 be a sequence of random variables and X be an other random
variable.

We say that Xn converges to X almost surely and denote Xn
a.s.−−→ X if ∀ε > 0

P( lim
n→∞

|Xn −X| > ε) = 0.

Convergence in probability denoted Xn
prob.−−−→ X is when for each ε > 0 we have

lim
n→∞

P(|Xn −X| > ε) = 0

We write Xn
D−→ X and say Xn converges to X in distribution if for each B ∈ B(R) with

P(X ∈ ∂B) = 0,
lim
n→∞

P(Xn ∈ B) = P(X ∈ B).
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There is a subtle difference between almost sure convergence and convergence in probability,
however almost sure convergence is a stronger statement than convergence in probability. The
reader can verify that almost sure convergence implies convergence in probability which in turn
implies convergence in distribution.

Now we define convergence of measures. This will play an important part in Chapter 3 where
we discuss infinitely divisible measures.

Definition 1.3.2. Let {µn}∞n=1 be a sequence of measures on the same measure space (Ω,F ),
then we say that µn converges weakly to a measure µ if one of the following hold

(i) For all bounded and continuous functions f : Ω → R

lim
n→∞

∫
Ω

f(x)µn(dx) =
∫

Ω

f(x)µ(dx)

(ii) For each closed F ⊂ Ω, lim supµn(F ) 6 µ(F )

(iii) For each open U ⊂ Ω, lim inf µn(U) > µ(U).

With the basic tools we have, we may begin to characterise probability spaces and random
variables.



Chapter 2

Characteristic Functions

“ Pure mathematics is the world’s best game. It is more absorbing than chess, more
of a gamble than poker, and lasts longer than Monopoly. It’s free. It can be played
anywhere - Archimedes did it in a bathtub. ”

-Richard J. Trudeau

2.1 Basic Properties

In this section we will be assuming that X is a random variable on (Ω,F ,P) (a probability
space). The aim of this chapter is to give a basic introduction to characteristic functions. We
shall not be proving most statements here. For a formal approach to this subject, we refer the
reader to Lukacs (1970) or Moran (1984).

In mathematics, Fourier transforms can reduce complicated tasks into simpler ones. We
can also use Fourier transforms on a distribution function to simplify the expression. For some
random variables the distribution cannot be explicitly known whereas we can often know the
characteristic function.

Definition 2.1.1. A characteristic function ψ of X is defined by,

ψ(θ) =
∫

R
eiθxP(X ∈ dx)

and the function logψ is referred to as the characteristic exponent of X.

This next theorem will play an important role in this paper. It describes the basic properties
of sequence of characteristic functions. We will be using this heavily in the forthcoming chapters
so it is important to keep in mind the equivalences stated in this theorem.

Theorem 4 (Lévy Continuity Theorem). Let {Xn : n = 1, 2, ...} be a sequence of random
variables (not necessarily on the same probability space) with characteristic functions ψn. If
ψn → ψ pointwise then the following are equivalent,

(i) ψ is the characteristic function of some random variable X

(ii) ψ is the characteristic function of X where Xn
D−→ X

(iii) ψ is continuous

(iv) ψ is continuous in some neighbourhood of 0.

For the proof see Fristedt and Gray (1997).
To see which functions are characteristic functions we need a theorem from analysis.

Theorem 5 (Bochner). A function ψ is a characteristic function if and only if the following
hold;

(i) ψ(0) = 1

(ii) ψ(θ) is continuous

(iii) for any {ui}ni=1 ⊂ R and {vi}ni=1 ⊂ C,
n∑
i=1

n∑
j=1

ψ(ui − uj)viv̄j > 0.

A proof of this can be found in any modern analysis book. The version for characteristic
functions can be found in, for example, (Moran, 1984, p. 273 Theorem 6.19).
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2.2 Examples

We will be using characteristic functions in the next chapter to work on a general class of random
variables. It is essential that we get familiar with some solid examples of characteristic functions
beforehand. These will be of the most common random variables.
Example 2.2.1. The characteristic of a N(µ, σ2) random variable X is

ψ(θ) = E[eiθX ] =
∫

R
eiθxP(X ∈ dx) =

∫
R
eiθx

1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
dx

= eiθµ−
θ2σ2

2

∫
R

1√
2πσ2

exp
(
− (x− (µ+ iσ2θ))2

2σ2

)
= eiθµ−

θ2σ2
2

.

Now we give an example of a discrete random variable, namely the Poisson random variable.
Example 2.2.2. The characteristic function of a Poisson random variable N with parameter λ is
of the form,

ψ(θ) =
∞∑
k=0

e−λ(λeiθ)k

k!
= eλ(eiθ−1).

Example 2.2.3. Suppose we have a sequence of i.i.d.1 random variables {ξn}∞n=1 with a common
law, say F , and a Poisson random variable N with rate λ that is independent of this sequence
of random variables. We can define a new random variable X by

X =
N∑
n=1

ξn.

To find its characteristic function, we will use the tower law which states that 2

E[E[A|B]] = E[A].

The proof of this is simple and is left as an exercise to the reader.
Now we can compute the characteristic function of X by

E[eiθX |N ] = E[eiθ
PN

n=1 ξn |N ] = E[
N∏
n=1

eiθξn |N ] =
N∏
n=1

E[eiθξn ] = E[eiθξn ]N

and so we have that
E[eiθX ] = E[E[eiθξn ]N ].

Now we need to derive the probability generating function of the Poisson process in order to
obtain an analytic expression for the characteristic function of X. The probability generating
function is given by

E[sN ] =
∞∑
n=0

snP(N = n) =
∞∑
n=0

sn
e−λλn

n!
= e−λ

∞∑
n=0

(sλ)n

n!
= eλ(s−1).

Hence the characteristic function of X is

E[eiθX ] = eλ(E[eiθξn ]−1) = eλ
R

R(eiθx−1)F (dx).

This will play an important role later when we introduce the compound Poisson process.

1Independent, identically distributed, i.e. they all have the same distribution and are independent (pairwise).
2We have not yet defined conditional expectation, we will be dealing with this later. The expectation here

can be defined as E[A|B] = E[A1B ]/P(B).



Chapter 3

Infinitely Divisible Random
Variables

“If people do not believe that mathematics is simple, it is only because they do not
realize how complicated life is. ”

- John Louis von Neumann

3.1 Definitions

Many of the random variables we have met can be expressed as a sum of the same random
variable with different parameters. This gives rise to a generalisation of these which are called
infinite divisible random variables.

Definition 3.1.1. A random variable X is said to be infinitely divisible if for each n ∈ N there
exists {X(n)

i }ni=1 of i.i.d. random variables such that

X
d=X

(n)
1 +X

(n)
2 + ...+X(n)

n

Alternatively one may define infinite divisibility on a measure µ of a random variable,

µ = λn(n) = λ(n) ∗ λ(n) ∗ ... ∗ λ(n)︸ ︷︷ ︸
n

where λ(n) is the law of some random variable.

Most distributions one encounters in every day life are infinitely divisible. This class of
random variables cover a wide range of properties. A prominent example is of the normal
random variable.

Example 3.1.2. A N(µ, σ2) random variable X is infinitely divisible, with the distributions
X(n) = N(µ/n, σ2/n). This is easily seen from the characteristic function of X,

exp(iθµ− θ2σ2/2) = exp(iθµ/n− θ2σ2/2n)n.

3.2 Properties

As it turns out, infinitely divisible random variables can be represented in an elegant way through
their characteristic functions. The aim of this section is to establish this result. We will be
combining the approaches of Moran (1984) and Lukacs (1970).

We approach the problem in the same manner as Paul Lévy did in 1934. The construction is
done via a sequence of Poisson like random variables which will limit to give the characteristic
function of infinitely divisible random variables

To obtain this results we wish to write the characteristic function of an infinitely divisible
distribution as ψ = elogψ which is valid as long as ψ is not zero (as the log function is not
defined at zero). After this we can go on to find that the characteristic function will be the limit

of ek(ψ
1
k −1) by the definition of the logarithm.
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Proposition 3.2.1. The characteristic function of an infinitely divisible random variable has
no zeros.

Proof. Let ψ be the characteristic function of an infinitely divisible random variable, then for
each n ∈ N we can find a characteristic function ψn such that ψ

1
n = ψn.

Now consider

φ(t) = lim
n→∞

ψ(t)
1
n =

{
1 if ψ(t) 6= 0
0 if ψ(t) = 0

Now as ψ(0) = 1 and ψ is continuous, we use the Lévy continuity theorem (Theorem 4) to
conclude that ψ is continuous in a neighborhood of 0. φ(0) = 1 and thus φ must be continuous
in a neighborhood of 0. Applying the Lévy continuity theorem again we conclude that φ is
continuous and thus φ = 1, hence ψ has no zeros.

Now we can go on to a theorem that will be very crucial in proving the main result.

Theorem 6. The characteristic function that is the limit of characteristic functions of infinitely
divisible processes is infinitely divisible.

Proof. Let {f (n)} be a sequence of infinitely divisible characteristic functions that converge to
a characteristic function f . Then for each n, k ∈ N there exists f (n)

k s.t. (f (n)
k )k = f (n). Now

as each f
(n)
k is also infinitely divisible and so by Proposition 3.2.1 has no zeros. Hence we may

infer that
f

(n)
k = e

1
k log f(n)

.

So we have that limn→∞ f
(n)
k = e

1
k log f = f

1
k is a the limit of characteristic functions and as

f is continuous, so is f
1
k so the Lévy Continuity Theorem tells us that f

1
k is a characteristic

function. Thus f is infinitely divisible.

Theorem 7 (De Finetti’s Theorem). The characteristic function ψ of a random variable is
infinitely divisible if and only if

ψ(θ) = lim
n→∞

epn(gn(θ)−1)

for some pn > 0 and gn, where gn are characteristic functions.

Proof. Suppose that ψ(θ) is infinitely divisible. Let pn = n and gn = ψ
1
n , then as ψ has no zeros

(by Proposition 3.2.1) and it follows that

ψ(θ) = elogψ(θ) = lim
n→∞

en(ψ(θ)
1
n −1) = lim

n→∞
epn(gn(θ)−1).

Now suppose that ψ(θ) = limn→∞ epn(gn(θ)−1), then for each q > 0

f(x) =
(

1 +
pn(gn(θ)− 1)

n

)q
.

is continuous and positive definite for each n ∈ N, and f(0) = 1 so we may apply Bochner’s
Theorem (Theorem 5) to conclude that it is a characteristic function. Hence we have that(

1 +
pn(gn(θ)− 1)

n

)n
is a characteristic function of an infinitely divisible distribution for each n ∈ N.

Hence passing to the limit as n tends to infinity gives

ψ(θ) = lim
n→∞

(
1 +

pn(gn(θ)− 1)
n

)n
= lim
n→∞

epn(gn(θ)−1)

is infinitely divisible by Lévy Continuity Theorem (Theorem 4) and Theorem 6.
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Corollary 3.2.2. A characteristic function is of an infinitely divisible distribution if and only
if it is the limit of Poisson like characteristic functions.

Proof. From De Finetti’s Theorem we have that ψ is the characteristic function of an infinitely
divisible distribution if and only if

ψ(θ) = lim
n→∞

epn(gn(θ)−1) = lim
n→∞

epn

R
R(eiθx−1)Gn(dx)

Now we can prove the main result. This will later prove to be very useful in dealing with
stochastic processes that have infinitely divisible distributions.

Theorem 8 (Lévy canonical representation). A characteristic function ψ is of an infinitely
divisible distribution if and only if it is of the form

logψ(θ) = aθi− 1
2
σ2θ2 +

∫ −0

−∞

(
eiθx − 1− iθx

1 + x2

)
M(dx) +

∫ ∞

+0

(
eiθx − 1− iθx

1 + x2

)
N(dx)

(3.2.1)
where M,N are non decreasing on the intervals (−∞, 0) and (0,∞) respectively such that,

lim
x→∞

∫ −x

−∞
M(dx) = lim

x→∞

∫ x

−∞
N(dx) = 0 (3.2.2)

and

∀ε > 0
∫ 0

−ε
x2M(dx) <∞

∫ ε

0

x2N(dx) <∞. (3.2.3)

Proof. We first prove the necessity of the condition. Let ψ be the characteristic function of an
infinite divisible distribution then by Corollary 3.2.2 we have that,

ψ(θ) = lim
n→∞

en
R

R(eiθx−1)Gn(dx)

where Gn is the measure of a Poisson like random variable.
Define ψn(θ) = en

R
R(eiθx−1)Gn(dx) and so

logψn(θ) = n

∫
R
(eiθx − 1)Gn(dx) = ianθ +

∫
R

(
eiθx − 1− iθx

1 + x2

)
1 + x2

x2
Hn(dx) (3.2.4)

where
an = n

∫
R

x

1 + x2
Gn(dx)

and

Hn(dx) = n
x2

1 + x2
Gn(dx).

Clearly Hn does not blow up as x2/(1+x2) bounded on ±∞. Now we need to show that an → a
and Hn → H weakly.

Define

λn(θ) =
∫ 1

0

logψn(θ)−
logψn(θ + h) + logψn(θ − h)

2
dh

=
∫ 1

0

∫
R

(
eiθx − ei(θ+h)x

2
− ei(θ−h)x

2

)
1 + x2

x2
Hn(dx) dh

=
∫ 1

0

∫
R
eiθx

(
1− eihx + e−ihx

2

)
1 + x2

x2
Hn(dx) dh

=
∫ 1

0

∫
R
eiθx(1− cosxh)

1 + x2

x2
Hn(dx) dh.

(3.2.5)
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Now we can reverse the order of the integration using Fubini’s Theorem to get,

λn(θ) =
∫

R
eiθx

(
1− sinx

x

)
1 + x2

x2
Hn(dx) =

∫
R
eiθxRn(dx)

where,

Rn(dx) =
(

1− sinx
x

)
1 + x2

x2
Hn(dx).

As ψ is continuous thus we have that λn converges to a continuous function. Hence we can
conclude1 that Rn converges weakly to a bounded and non-decreasing function R, that is to say
for all f ∈ C#, 2

lim
n→∞

∫
R
f(x)dRn(x) =

∫
R
f(x)R(dx).

In particular for each g ∈ C#,
(
1− sin x

x

)−1 x2

1+x2 g(x) is continuous and also vanishes at ∞ and
−∞.3 Hence, Hn converges weakly to some distribution function H and by the same argument
nGn converges weakly to some G. Thus we have that,∫

R

(
eiθx − 1− iθx

1 + x2

)
1 + x2

x2
Hn(dx) →

∫
R

(
eiθx − 1− iθx

1 + x2

)
1 + x2

x2
H(dx)

and
an = n

∫
R

x

1 + x2
Gn(dx) → a.

Thus we have proved that any infinitely divisible distribution has a characteristic function of the
form,

logψ(θ) = iaθ +
∫

R

(
eiθx − 1− iθx

1 + x2

)
1 + x2

x2
H(dx) (3.2.6)

which is known as the Lévy-Khintchine canonical representation. Now we can define,

σ2 = H(+0)−H(−0)

M(x) =
∫ x

−∞

1 + x2

x2
H(dx) x < 0

N(x) = −
∫ ∞

x

1 + x2

x2
H(dx) x > 0.

This satisfies (3.2.1),(3.2.2) and (3.2.3).
The sufficiency is an application of Corollary 3.2.2 to (3.2.4).

The representation in the last theorem are unique up to distribution by the property of the
Fourier transform. We will for now leave this as it is and return to it in Chapter 6 where we will
be talking about Lévy processes.

1For proof of this see (Moran, 1984, p.252 Theorem 6.3)
2C# are the set of R-valued continuous functions that vanish at ∞ and −∞
3Notice that (1− sin x/x) → 1 and x2/(1 + x2) → 1 as x tends to ±∞. Thus the function defined vanishes at

±∞ as g vanishes.



Chapter 4

Brownian Motion

“ One cannot escape the feeling that these mathematical formulas have an independent
existence and an intelligence of their own, that they are wiser than we are, wiser even
than their discoverers... ”

-Heinrich Hertz

4.1 Definition and Construction

Brownian motion is one of the most interesting stochastic processes around. It posses various
amounts of properties and hence has been the focus of study for a long time. The idea of Brownian
motion, sometimes known as the Wiener process, is modeled after the physical phenomena of a
smoke particle moving about in air. It was Brown that discovered that it was the air particles that
produced this seemingly random motion and Norbert Wiener that mathematically formalised it.

Imagine a particle of smoke being bombarded by particles of air. The seemingly random
motion that this smoke particle exhibits is called Brownian motion.

Definition 4.1.1 (Brownian Motion). A stochastic process Wt is called a Brownian motion or
a Wiener process if it satisfies the following properties,

(i) W0 = 0 almost surely

(ii) for 0 6 t1 6 ... 6 tn, Wtk −Wtk−1 , ...,Wt2 −Wt1 are independent

(iii) for s < t, Wt −Ws is distributed N(0, t− s)

(iv) t 7→Wt is continuous almost surely.

We will be proving that a Brownian motion does indeed exist and some of the basic properties
it posses. It is useful to first work in the interval [0, 1] as anything proved in this will be easily
extended to Rd.

4.1.1 Interval [0, 1]
Notice that we can reformulate (ii) and (iii) as, for s < t Wt−Ws is independent of {Wu : u 6 s}
and for each t > 0, Wt is distributed N(0, t).

The proof for existence of Brownian motion without continuity is routine. This is done by
using the Kolmogorov’s extension theorem. Kolmogorov’s extension theorem, also known as the
consistency theorem, is a theorem that allows a finite dimensional distribution to be extended
to a stochastic process. It is similar to that of Carathèodory’s extension theorem.1

Suppose we have 0 < t1 < ... < tn and a measure µt1,...,tn on (Rd)n. If for any permutation
σ on {1, ..., n}, m ∈ N and A1, ..., An ⊂ Rd,

µtσ(1),tσ(2),...,tσ(n)(A1 ×A2 × ...×An) = µt1,t2,...,tn(Aσ(1) ×Aσ(2) × ...×Aσ(n))

and
µt1,..,tn,tn+1,..,tn+m(A1 × ...×An × R× ...× R) = µt1,..,tn(A1 × ...×An)

then µ will extend uniquely up to a measure on some space. This theorem gives us a tool for
describing a stochastic process by its finite dimensional distributions. We will describe how to
construct a Brownian motion using this theorem but it will be apparent why we need more.

1Carathèodory’s extension theorem states that a countably additive measure on a ring of sets can be extended
uniquely to a measure on the σ-algebra generated by this ring.
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For 0 < t1 < ... < tn 6 1 we define a measure µ on Rn as follows,

µt1,...,tn(A1 × ...×An) =
∫
A1

dx1...

∫
An

dxn

n∏
i=1

(
1√

2π(ti − ti−1)
exp

{
− (xi − xi−1)2

(ti − ti−1)

})
.

The assumptions of the Kolmogorov’s extension theorem can easily be verified in this instance.
Therefore this extends to give a measure on [0, 1]. Kolmogorov’s extension theorem does not
guarantee the continuity of the paths. It is not at all obvious why we need the continuity in the
definition. To see the importance of this, consider the following example.

Example 4.1.2. Let us for a second assume that Brownian motion exists on [0, 1] call this Bt.
Let U be a uniform random variable on [0, 1] independent of Bt, now we define a new process
B′
t by

B′
t =

{
Bt if t 6= U

0 otherwise

One can see that this function satisfies the first three properties of Brownian motion but it
is almost surely discontinuous.

Now assured that our efforts to prove continuity are not in vain, we may continue. We will
approach the problem in a much similar manner to that of Norbert Wiener. Alternative approach
via the Polish space2 C([0,∞),Rd) is given in Strook and Varadhan (1979).

We will do a direct construction using the lemma below. The construction will be of a
sequence of stochastic processes which are almost surely convergent uniformly.

Lemma 4.1.3. The uniform limit of a sequence of continuous functions is continuous.

The proof of this is just an application of the definitions which we leave to the unsure reader
as an exercise.

Next we introduce Haar functions {f0, fk,n, k = 1, ..., 2n−1 n = 1, 2, ...}, which form a basis
for L2[0, 1].

f0(t) = 1

fk,n(t) =

 2
n−1

2 t ∈
[
k−1
2n , k2n

)
−2

n−1
2 t ∈

[
k
2n ,

k+1
2n

)
0 otherwise

(4.1.1)

These are more useful for us when they are integrated indefinitely. These are called Schauder
functions and are given by,

F0(t) = t

Fk,n(t) =

 2
n−1

2
(
t− k−1

2n

)
t ∈
[
k−1
2n , k2n

)
2

n−1
2
(
k+1
2n − t

)
t ∈
[
k
2n ,

k+1
2n

)
0 otherwise

(4.1.2)

Now equipped with the Schauder functions, we may begin constructing a Brownian motion.
Let {X0, Xk,n, k = 1, ..., 2n−1 n = 1, 2, ...} be i.i.d. N(0, 1) random variables. We define a
sequence {Wn

t } on [0, 1] by, 3

2Complete separable metric space
3We will be changing between notation of W n

t , by referring to its value for a particular ω ∈ Ω by W n(t, ω)
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Wn(t, ω) = X0F0(t) +
n∑
i=1

Yi(t, ω) (4.1.3)

where,

Yi(t, ω) =
2i−1∑
j=1

Xj,i(ω)Fj,i(t). (4.1.4)

In layman’s terms, we construct Wn by picking dyadic rationals and assigning a normal
distribution N

(
0, k2n

)
for each k. Notice that the sum means that there is some dependence, but

an avid reader may observe this will satisfy the independent increments on the dyadic rationals
which will extend to the whole line [0, 1] when we take the limit.

It is immediately obvious from equations (4.1.4) and (4.1.2) that each Wn is continuous for
all ω ∈ Ω. The following theorem will provide the most useful information.

Theorem 9. The sequence of {Wn} defined above almost surely converges uniformly to a
stochastic process W .

Proof. First we see from (4.1.3) that for each ω ∈ Ω, we first need to analyse Yn(t, ω) for each
n ∈ N. Notice that by (4.1.4) and the fact that Fk,n is maximum at t = k

2n ,

max
t∈[0,1]

|Yn(t, ω)| = 2
−n−1

2 max
16i62n−1

|Xi,n| (4.1.5)

So for each cn ∈ R

P( max
t∈[0,1]

|Yn(t, ω)| > 2
−n−1

2 cn) = P( max
16i62n−1

|Xi,n| > cn)

6
2n−1∑
i=1

P(|Xi,n| > cn)

= 2
2n−1∑
i=1

P(Xi,n > cn) by symmetry

=
2n−1∑
i=1

2√
2π

∫ ∞

cn

e−
x2
2 dx

6
2n−1∑
i=1

2√
2π

∫ ∞

cn

x

cn
e−

x2
2 dx

=
2n

cn
√

2π
e−

c2n
2 .

Now picking cn = 2
√

2n log n gives,

P( max
t∈[0,1]

|Yn(t, ω)| > 2
1−n

2
√

2n log 2) 6 C
2−3n

√
n

(4.1.6)

for some constant C.
Notice that applying the ratio test to 2−3n

√
n

,

2−3n−3
√
n

2−3n
√
n+ 1

6 2−3 < 1
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gives that

∞∑
n=1

P( max
t∈[0,1]

|Yn(t, ω)| > 2
1−n

2
√

2n log 2) 6
∞∑
n=1

C
2−3n

√
n

<∞.

Application of the Borel-Cantelli Lemma shows,

P( max
t∈[0,1]

|Yn(t, ω)| > 2
1−n

2
√

2n log 2 i.o.) = 0. (4.1.7)

Let An = {ω ∈ Ω : maxt∈[0,1] |Yn(t, ω)| > 2
1−n

2
√

2n log 2} then the statement above means
that

P(ω ∈ An i.o.) = 0.

Denote lim supnAn = A and notice that 2
1−n

2
√

2n log 2 → 0 as n → ∞. So we have that if
ω 6∈ A then by the definition of A, Wn(t, ω) is uniformly convergent. If ω ∈ A then we have
that with probability one, ω is in finitely many An. Hence with probability one we can pick an
N ∈ N such that,

max
t∈[0,1]

|Yn(t, ω)| 6 2
1−n

2
√

2n log 2 for n > N.

Hence we have that Yn is almost surely convergent.
Now we apply the ratio test once again,

2−
n
2
√

2n log n+ 2 log 2
2

1
2 2−

n
2
√

2n log 2
→ 2−

1
2 < 1

gives that
∞∑
n=1

Yn(t, ω) <∞ almost surely, which completes the proof.

There is still the outstanding issue of what to do with the set of ω that do not converge. We
can set these points to 0 as these are the P-null sets, it will not effect the probabilities nor any
of the properties that the limiting stochastic process has.

Now we go on to prove that this W is actually a Brownian motion.

Theorem 10. The process W given above is a Brownian motion.

Proof. We will be checking the conditions given by the definition of Brownian motion at the
start of the chapter.

(i) Notice that for each n ∈ N we have Wn(0, ω) = 0, hence W0 = 0 almost surely.
(ii) The independence of the increments follow directly from the construction. The sequence

of normal random variables are independent.
(iii) Let us relabel the Haar functions defined on (4.1.1) as {fi, i = 1, 2, ...} for convenience.

Define

It(s) =
{

1 if s < t
0 otherwise

As the Haar functions form a complete orthonormal basis over L2 we have that,

It =
∞∑
i=1

〈It, fi〉 fi.

Now we have that

t = ||It||2 = 〈It, It〉 =

〈
It,

∞∑
i=1

〈It, fi〉 fi

〉
=

∞∑
i=1

〈It, fi〉2 ,
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We can use the fact that the {X0, Xl,k} defined by (4.1.4) are i.i.d. to observe that for each
n ∈ N, Wn

t is distributed N(0, 1) times the sum

k(n)∑
i=1

∫ t

0

fi(x)dx =
k(n)∑
i=1

〈fi, It〉

where k(n) is an increasing function of n such that k(0) = 0.4 Thus each Wn
t is distributed

N(0,
∑k(n)
i=1 〈fi, It〉2) and thus has characteristic function of the form exp(−

Pk(n)
i=1 〈fi,It〉2

2 ).5 This

converges to exp(−
P∞

i=1〈fi,It〉2
2 ) = exp(− t

2 ). Hence by Lévy Continuity Theorem, Wt is dis-
tributed N(0, t) and coupled with (i) and (ii) gives the result.

(iv) Continuity follows from Theorem 9.

4.1.2 Extension to [0,∞)d

First let us extend the Brownian motion to [0,∞).

Theorem 11. Let Wt,W
′
t be two independent copies of a Brownian motion on [0, 1], then Bt

defined as

Bt =
{
Wt if t ∈ [0, 1]
tW ′

1/t if t ∈ (1,∞) (4.1.8)

is a Brownian motion on [0,∞).

Proof. It is easy to see that on [0, 1], Bt is a Brownian motion. Now (i), of the definition of
Brownian motion, is satisfied by this property.

For (ii) we prove that for s < t, Wt −Ws is independent of {Wu : u 6 s}.
Case s, t ∈ [0, 1]: Holds by the construction.
Case s, t,∈ (1,∞): Consider Cov(Bt−Bs, Bu) = E[(E[Bt]−E[Bs]−(Bt−Bs))(E[Bu]−Bu)] =

E[(sW ′
1/s − tW ′

1/t)uW
′
1/u] for u ∈ (1,∞). Thus we have that

Cov(Bt −Bs, Bu) = suE[W ′
1/sW

′
1/u]− tuE[W ′

1/tW
′
1/u] = su

(
1
s
∧ 1
u

)
− tu

(
1
t
∧ 1
u

)
= 0.

Hence Bt −Bs is independent of Bu. If u ∈ [0, 1] then the result is obvious.
Case s ∈ [0, 1], t ∈ (1,∞): Immediate from the construction (W and W ′ are independent).
(iii) follows from the fact that tW ′

1/t is distributed N(0, t2/t).
(iv) is immediately obvious, except at the point t = 1. Intuitively this should hold, but it

does no harm to check that this is indeed true.
Define An = {ω : |B1− 1

2n2
−B1+ 1

2n2
| > cn}, it suffices to show that P(An i.o.) = 0, as we can

set all the null-sets that are not continuous to be 0. We shall apply the Borel-Cantelli Lemma,
so first notice that

P(An) = P
(
|B1− 1

2n2
−B1+ 1

2n2
| > cn

)
= P

(
|B 1

n2
| > cn

)
= 2P

(
B 1

n2
> cn

)
= 2P(Z > ncn)

=
∫ ∞

ncn

1√
2π
e−

x2
2 dx 6

∫ ∞

ncn

1√
2π
xe−

x2
2 dx =

1√
2π
e−n

2c2n .

4This formalism is due to the fact that we have relabeled the Haar functions and hence we may be summing
more than n of them.

5To see this let {Xi}
k(n)
i=1 be a sequence of normal random variables, then

Pk(n)
i=1 Xi 〈fi, It〉 = X1 〈f1, It〉+ ...+

Xk(n)

˙
fk(n), It

¸
, with each Xi 〈fi, It〉 distributed N(0, 〈fi, It〉2).
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Now we pick cn = 1/
√
n and we have that An i.o. describes the sample paths that are discon-

tinuous at 1. By noting that

∞∑
n=1

P(An) 6
∞∑
n=1

1√
2π
e−n

2c2n =
1√
2π

∞∑
n=1

(e−1)n <∞

we may apply the Borel-Cantelli Lemma to deduce that P(An i.o.) = 0, hence Bt is almost surely
continuous at t = 1.

Now we can extend Brownian motion to [0,∞)d in an obvious way.

Theorem 12. Suppose {B(i)}di=1 is a sequence of independent Brownian motions on [0,∞),
then B = {Bt : t > 0} defined by

Bt = (B(1)
t , ..., B

(d)
t )

is a Brownian motion on [0,∞)d.

The proof of the theorem is rather tedious checking of the definition, which we shall leave
out. Unsure reader is advised to check for themselves that this indeed does satisfy the definition
of a Brownian motion.

4.2 Properties

Brownian motion has been subject to a considerable amount of study. The main reason for this
is that it satisfies a lot of nice properties which we shall devote some time to in this section.
Interested reader is referred to Rogers and Williams (1988) for a full study of the properties.

A corollary to Baire’s category theorem states that the set of nowhere differentiable func-
tions are dense in the continuous functions. The first function that was known to be nowhere
differentiable but continuous was the Weierstrass function. Now we can give an example of an
almost surely continuous but nowhere differentiable function.

Theorem 13. Brownian motion is nowhere differentiable almost everywhere.

Intuitively this is pretty clear. If we take a Newton quotient of Brownian motion (W (t+h)−
W (t))/h, we find that a derivative at any point is distributed N

(
0, 1

h

)
. As h ↓ 0 this clearly

does not converge. We will use the Borel-Cantelli lemma to verify this in what follows.

Proof. Notice that as Wt is distributed as N(0, t), Wt+h−Wt

h is distributed as N
(
0, 1

h

)
for each

h > 0. Fix t > 0 and let

Kn :=

{
ω : inf

x∈R

∣∣∣∣∣Wt+ 1
n
(ω)−Wt(ω)

1
n

− x

∣∣∣∣∣ 6 1
n

}
.

For each x ∈ R,
{
W

t+ 1
n

(ω)−Wt(ω)

1
n

− x

}
has the distribution N(−x, n). Thus for each x, cn ∈

R, we have

P

(∣∣∣∣∣Wt+ 1
n
(ω)−Wt(ω)

1
n

− x

∣∣∣∣∣ 6 cn

)
= 2

∫ cn

0

1√
2πn

exp
(
− (s+ x)2

2n

)
ds

6
2cn√
2πn

.
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An obvious choice of cn is 1√
n3 which gives

∞∑
n=1

P

(∣∣∣∣∣Wt+ 1
n
(ω)−Wt(ω)

1
n

− x

∣∣∣∣∣ 6 1√
n3

)
6

2√
2π

∞∑
n=1

1
n2

=
4√
2π
.

Note that the above holds for each x ∈ R and in particular
∞∑
n=1

P(Kn) 6
4√
2π

. So by the

Borel-Cantelli Lemma

P

(
inf
x∈R

∣∣∣∣∣Wt+ 1
n
(ω)−Wt(ω)

1
n

− x

∣∣∣∣∣ 6 1
n

i.o.

)
= 0.

Hence Wt is almost surely not differentiable at t. Our choice of t was arbitrary.

While proving the existence of Brownian motion, we came across some properties that are
listed below.

Theorem 14. Brownian motion is time invertible. That is, B = {tW1/t, t ∈ [0,∞)} (where
B0 = 0) is a Brownian motion.

Proof. See Theorem 11.

Theorem 15. Brownian motion is time reversible. That is for any fixed T > 0, B = {WT −
WT−t, t ∈ [0, T ]} is a Brownian motion.

Proof. LetWt be a Brownian motion on [0, T ], then we show that Bt = WT−WT−t is a Brownian
motion on [0, T ]. Bt = 0 a.s. so (i) is satisfied.

Suppose that 0 6 s < t 6 T , then Bt − Bs = WT −WT−t −WT −WT−s = WT−s −WT−t.
As s < t, WT−s−WT−t is independent of all WT−u such that T −u 6 T − t, i.e. of all Bu. This
proves (ii).

(iii) follows from the properties of normal distributions and (iv) follows from the construction.



Chapter 5

Poisson Processes

“ We’ve all heard that a million monkeys banging on a million typewriters will even-
tually reproduce the entire works of Shakespeare. Now, thanks to the internet, we
know this is not true. ”

-Robert Silensky

5.1 Poisson Processes

In this chapter we will be working with an important class of stochastic processes, namely the
Poisson processes. These have a lot of applications in finance and queuing theory.

The idea behind the Poisson process is to model arrivals with a Poisson random variable at
some rate λ. Say we count the amount of cars at a street and the arrival rate of the cars is
distributed as a Poisson distribution with parameter λ, then the number of cars Nt at time t
would be a Poisson process. This leads to the following definition.

Definition 5.1.1. A Poisson process Nt is a stochastic process that satisfies the following,

(i) N0 = 0 almost surely

(ii) for 0 6 t1 6 ... 6 tn, Ntk −Ntk−1 , ..., Nt2 −Nt1 are independent

(iii) for s < t, Nt −Ns is distributed Pois((t− s)λ)

(iv) t 7→ Nt is almost surely right continuous with left limits.

We may construct a Poisson process in the following way. Let {Xn}∞n=0 be a random walk
with X1 distributed as an exponential of rate λ. Now we can define Nt as follows,

Nt(ω) = n if and only if Xn(ω) 6 t < Xn+1(ω).

Intuitive argument to why this is a Poisson process is due to the holding times at each state
being distributed exponentially with parameter λ. A rigorous proof of this can be found in Sato
(1999).

We will now introduce the compound Poisson process. Carrying on with our example, suppose
that we only measure the red cars passing by and that the distribution of the cars being red is
ξ. If we let {ξi}∞i=1 be an i.i.d. sequence of random variables, then clearly the number of cars
that are red at time t is given by

∑Nt

i=1 ξi. This leads on to the definition of a compound Poisson
process.

Definition 5.1.2. Let Nt be a Poisson process and {ξi}∞i=1 be a set of i.i.d. random variables
independent of Nt. Then a compound Poisson process Yt is defined by,

Yt =
Nt∑
i=1

ξi.
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5.2 Poisson Measures

Recall that a Polish space E is a complete separable metric space. The aim of this section is
to introduce the concept of Poisson measures. We will not be approaching this matter formally,
as we will not be using it in the rest of the paper. A formal approach to this can be found in
Kyprianou (2006) and a more relaxed approach can be found in Bertoin (1996).

Definition 5.2.1. Let E be a Polish space and ν a σ-finite measure on E. We call a ran-
dom measure K a Poisson measure with intensity ν if for each disjoint B1, ...Bn ⊂ B(E),
K(B1), ...,K(Bn) are independent and have Poisson distributions with parameters ν(B1), ..., ν(Bn)
respectively.

We can construct the Poisson measure in the following way, first suppose that the measure ν
is finite, then let {ξi}∞i=1 be a sequence of i.i.d. random variables with the common law ν/ν(E),
and N be a Poisson random variable with parameter ν(E), independent of the ξis. Then we can
define the random measure K as, 1

K =
N∑
i=1

δξi

where δ is the Dirac delta function.2

If ν is σ-finite we do the same construction for {En}∞n=1 where En ↑ E to obtain a corre-
sponding Kn, then we set

K =
∞∑
n=1

Kn.

Let ∆i be the jump times of Nt, i.e. N∆i
−N∆i− > 0. We see that the measure K on sets

A ∈ B[0,∞)×B(R\{0}) can also be expressed as,

K(A) =
∞∑
i=1

1(∆i,ξi)∈A. (5.2.1)

This construction gives that for any B ∈ B[0, t)×B(R\{0}), t > 0, K(B) <∞ as the Poisson
process has finite jumps in any finite time interval. The latter fact can be verified by the
construction given above.

These measures play an important role in describing jumps of Lévy processes but we shall
not be using them in what follows. The reader is encouraged to think about the proofs in the
forthcoming chapter in a Poisson measure way.

1c.f. Bertoin (1996).
2Recall that Dirac delta function δx is zero everywhere but x, where it attains the value ∞.



Chapter 6

Lévy Processes

“ Mathematicians are like Frenchmen: whatever you say to them they translate into
their own language and forthwith, it is something entirely different. ”

-Johann Wolfgang von Goethe

6.1 Definitions

All the processes we have met in the previous chapter share some common ground. All of
them have stationary, independent increments. Notice that even thought Brownian motion is
continuous and Poisson processes are not continuous, however, they are all right continuous with
left limits. This gives rise to a very general class of processes whose name is attributed to Paul
Lévy.

The analysis of these processes will give a rich understanding of the underlying structure
of most of the stochastic processes that we may encounter. Some books that deal with these
processes are Kyprianou (2006), Sato (1999) and Bertoin (1996).

Definition 6.1.1 (Lévy Process). A stochastic process Lt is said to be a Lévy process if it
satisfies the following

(i) L0 = 0 almost surely

(ii) for 0 6 t1 6 ... 6 tn, Ltk − Ltk−1 , ..., Lt2 − Lt1 are independent

(iii) for s < t, Lt − Ls is equal in distribution to Lt−s
(iv) t 7→ Lt is almost surely right continuous with left limits.

Any process satisfying (i), (ii) and (iii) is called a Lévy process in law.
As it turns out, there is a deep connection between Lévy processes and infinitely divisible

random variables. The next lemma will be a starting point of this connection. We will see in
this chapter that we can, in some sense, establish a one-to-one correspondence between Lévy
processes and infinitely divisible random variables.

Lemma 6.1.2. A Lévy process Lt is infinitely divisible for each t > 0.

Proof. Let Lt be a Lévy process, then for each n ∈ N,

Lt
d=L t

n
+
(
L 2t

n
− L t

n

)
...+

(
Lnt

n
− L (n−1)t

n

)

6.2 Representations

6.2.1 Lévy-Khintchine representation
This next theorem is a reformulation of the Lévy-Khintchine canonical representation. This was
presented by Paul Lévy in Lévy (1934) and later a much simpler proof was given by Khintchine
(1937). This gives a simple and elegant way of working with Lévy processes, it allows us to have
a general form of a characteristic function which is as good as having the law of the process.
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Theorem 16 (Lévy-Khintchine representation). Let ψt be the characteristic function of a Lévy
process then it is of the form

ψt(θ) = etΨ(θ) (6.2.1)

where
Ψ(θ) = γθi− 1

2
σ2θ2 +

∫
R\{0}

(eiθx − 1− iθx1|x|<1)Π(dx) (6.2.2)

where γ ∈ R, σ > 0 and Π is a measure that satisfies∫
R\{0}

(x2 ∧ 1) Π(dx) <∞.

Moreover for any characteristic function of this form, there exists a Lévy process in law such
that it obtains the given characteristic function.

Proof. Let Lt be a Lévy process and let n,m ∈ N, then we have that Ln = Ln/m + (L2n/m −
Ln/m) + ... + (Ln − L(m−1)n/m). Hence we see that nψ1 = ψn = mψn/m, and so for any t > 0
let ai ↓ t where {ai}∞i=1 ⊂ Q, then ψt = limi→∞ ψai = limi→∞ aiψ1 = tψ1 which gives (6.2.1).

As ψt is infinitely divisible, from Lévy canonical representation we know that, 1

Ψ(θ) = iγθ +
∫

R

(
eiθx − 1− iθx

1 + x2

)
1 + x2

x2
H(dx)

We define a measure Π on R\{0} by,

Π(dx) =
1 + x2

x2
H(dx).

Notice that this is well defined as a distribution function, as H is a distribution function so
the limits are finite as x → ±∞. Also for the same reasons as in the proof of Lévy canonical
representation (Theorem 8), Π has an atom at x = 0. Recall that F (dx) =

(
1− sin x

x

)
1+x2

x2 H(dx)
and so rearranging the Lévy-Khintchine canonical representation gives,

Ψ(θ) = iθa+
∫

R

(
eiθx − 1− iθx

1 + x2

)
Π(dx)

= iθγ − 1
2
σ2θ2 +

∫
R\{0}

(eiθx − 1− iθx1|x|<1)Π(dx)

where

γ = a+
∫

R\{0}

(
1|x|>1

1 + x2

x
− x

)
F (dx)

σ2 = Π({0})
.

Note that ∫
R\{0}

(
1|x|>1

1 + x2

x
− x

)
F (dx) <∞

as we have (1 + x2)/x− x→ 0 as x→ ±∞ and as F is a finite measure.
For the second part take 0 6 t1 6 t2 6 ... 6 tn <∞ and consider the characteristic functions

ψi = etiΨ for each i = 1, ..., n, where Ψ is the characteristic exponent given by (6.2.2). We
can reverse the procedure of the first half of the proof to obtain the Lévy-Khintchine canonical

1We use the Lévy-Khintchine canonical form (3.2.6)
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representation,2 thus we see that for each i = 1, ..., n, ψi is the characteristic function of some
infinitely divisible random variable by the Lévy canonical representation.

Now we have specified the finite dimensional distributions of the a stochastic process. The
reason for this is that the characteristic function is unique up to distribution,3 which is a well
known fact from Fourier transforms. Hence we can use the Kolmogorov’s extension theorem to
make this into a stochastic process on some probability space. It can be easily checked that this
construction satisfies the conditions of the extension theorem.

We can also see that this satisfies stationary independent increments and hence it is a Lévy
process in law.

Remark 6.2.1. Notice that Kolmogorov’s extension theorem does not give càdlàg paths. A
proposition in Rogers and Williams (1988) tells us that a function y : Q → R has limits on
t ∈ R if on any finite time interval sup |y| < ∞ and the number of upper crossing are finite.
By restricting the process we get from Kolmogorov’s extension theorem to Q, we can prove that
these conditions hold almost surely, thus we can in fact construct a càdlàg process, by taking
Xt = limQ3s↓tX

′
s, that has the characteristic function given by (6.2.2). The interested reader is

referred to Protter (2005) for a formal approach using martingales.

Notation 6.2.2. A Lévy process is characterised by the triplet (γ, σ2,Π) given by the Lévy-
Khintchine representation in (6.2.2). The measure Π is called the Lévy measure.

6.2.2 Lévy-Itô decomposition
Next we prove a theorem that gives deep insight into the workings of a Lévy process. This was
first proved by Itô (1942). It states that a Lévy process can be thought of a combination of
Brownian motion, compound Poisson and a pure jump process. We will be following a similar
path to that of Kyprianou (2007). An alternative, nevertheless very similar, proof using Poisson
random measures can be found in Kyprianou (2006).

The Lévy-Khintchine representation gives us a characteristic function for any given Lévy
process. This section is dedicated to the converse of this. Given a characteristic function of the
form (6.2.2), we wish to obtain a Lévy process that satisfies this. We so far can only obtain a
Lévy process in law. We will prove the converse of this via the Lévy-Itô decomposition, which
will give more insight then we require into the composition of Lévy processes.
Square Integrable Martingales
Looking at the Lévy-Khintchine representation, we see that it separates into three parts. First of
these is a Brownian motion with drift, which has characteristic exponent of the form γθi− 1

2σ
2θ2.

The integral gives us two process, one of which is a compound Poisson process on R\(−1, 1) with
characteristic exponent

∫
R\(−1,1)

(eiθx − 1)Π(dx). So all that is left is the mysterious process
with the characteristic exponent

∫
(−1,1)\{0}(e

iθx − 1 − iθx)Π(dx). As it will be shown, this too
is a Lévy process, moreover it is a square integrable Martingale with finite jumps on any finite
interval.

We will construct this process as a limit of compound Poisson process. The study of martin-
gales is first required in order to be able to construct this.

By a filtration on a probability space (Ω,F ,P), we mean a sequence of σ-subalgebras {Ft}t∈R
such that Fs ⊂ Ft whenever s 6 t. A stochastic process X is said to be Ft adapted if for each
t > 0, Xt is Ft-measurable. We will always be assuming that the process we are dealing with
is adapted to the filtration. A natural way to construct a filtration with a stochastic process is

2Here we absorb the ti into the characteristic function, i.e. we have γ′ = tiγ, σ′2 = tiσ
2 and Π′ = tiΠ.

3By this we mean two random variables have the same characteristic function if and only if they have the
same distribution.
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Ft = σ(Xs : s 6 t).4 We define conditional expectation E[Y |Fs], where Y is a random variable,
to be the random variable Z such that for each B ∈ Fs,

∫
B
Z(ω)P(dω) =

∫
B

E[Y |Fs](ω)P(dω).
A martingale M with respect to a filtration Ft is a stochastic process with E[|Mt|] <∞ for

each t ∈ R and E[Mt|Fs] = Ms whenever s 6 t.
We can now begin by proving a crucial result. The processes that we wish to take the limit

of are Cauchy, thus we need to define a Hilbert space to conclude that they converge.

Theorem 17. The space of square integrable martingales M2
T = M2

T (Ω,F , {Ft : t ∈ [0, T ]},P)
is a Hilbert space under the scalar product

〈M,N〉 = E[MTNT ] M,N ∈ M2
T . (6.2.3)

Proof. First we prove that (6.2.3) induces a scalar product on M2
T . Let M,N,H ∈ M2

T and
α, β ∈ R then

〈αN + βM,H〉 = E[(αNT + βMT )HT ] = E[αNTHT + βMTHT ]
= αE[NTHT ] + βE[MTHT ]
= α 〈N,H〉+ β 〈M,H〉 .

Also
〈M,M〉 = E[M2

T ] > 0.

When E[M2
T ] = 0 then we can use Doob’s Maximal Inequality,

E
[

sup
06t6T

M2
t

]
6 4E[M2

T ] = 0

thus we have that M = 0 almost surely. Thus we have an scalar product on M2
T .

Now take a Cauchy sequence {M (n)}∞n=1 in M2
T then

||M (n) −M (m)|| = E[(M (n)
T −M

(m)
T )2]

1
2 .

Hence {M (n)
T }∞n=1 is a Cauchy sequence in the Hilbert space of square integrable random variables

L2(Ω,FT ,P) and hence converges.5 Thus we have that {M (n)}∞n=1 converges to some M ∈ M2
T

which completes the proof.

With a Hilbert space, we may begin constructing a sequence that will turn out to be a Cauchy
sequence and hence converge. Firstly we need some preliminary results about the compound
Poisson process. This next Lemma may seem obvious but it does no harm for us to check it.

Lemma 6.2.3. Suppose that
∫

R |x|F (dx) <∞, then the process {Mt : t > 0} defined by

Mt =
Nt∑
i=1

ξi − λt

∫
R
xF (dx)

is a martingale with the natural filtration.6
Moreover if

∫
R x

2F (dx) <∞ then M is a square integrable martingale with,

E[M2
t ] = λt

∫
R
x2F (dx).

4Henceforth we will be assuming that the filtration is complete and right continuous. We say that a σ-algebra
is complete (with respect to P) if for each P-null set B ∈ F , the subsets A ⊂ B are also in F . We can complete
a filtration by taking all the P-null sets and adding them on to each Ft. We can make any filtration {Ft : t > 0}
right continuous by making a new filtration F∗

t := ∩s>tFs. Thus these two assumptions do not restrict us.
5Notice that square integrable random variables are closed in L2 thus they form a Hilbert space in their own

right.
6Here we take Nt to be a Poisson process with rate λ and F to be the measure of the i.i.d. random variables

{ξi}∞i=1.
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Proof. Notice that M is a càdlàg process with independent, stationary increments, as it is a
compound Poisson process with drift. Thus we have that

E[Mt|Fs] = Ms + E[Mt −Ms|Fs] = Ms + E[Mt−s]. (6.2.4)

We will be done once we can show that E[Mt−s] = 0. Note that for any u > 0,

E[Mu|Nu] =
Nu∑
i=1

E[ξi|Nu]− λt

∫
R
xF (dx) = NuE[ξ1]− λt

∫
R
xF (dx).

Hence we can use the tower property to deduce that,

E[Mu] = λtE[ξ1]− λt

∫
R
xF (dx).

Note that λt
∫

R |x|F (dx) < ∞, thus we can deduce that E[Mu] = 0 and hence by plugging this
in to (6.2.4) we see that Mt is a martingale with respect to the natural filtration.

Now we prove the second part of the Lemma. Suppose that
∫

R x
2F (dx) <∞, then

E[M2
t ] = E

( Nt∑
i=1

ξi

)2
− 2λtE

[
Nt∑
i=1

ξi

]∫
R
xF (dx) + λ2t2

(∫
R
xF (dx)

)2

= E

( Nt∑
i=1

ξi

)2
− λ2t2

(∫
R
xF (dx)

)2

= E

[
Nt∑
i=1

ξ2i

]
+ E

 Nt∑
k=1

Nt∑
l=1,l 6=k

ξkξl

− λ2t2
(∫

R
xF (dx)

)2

.

(6.2.5)

Notice that conditioning on Nt we get that,

E

 Nt∑
k=1

Nt∑
l=1,l 6=k

ξkξl|Nt

 =
Nt∑
k=1

Nt∑
l=1,l 6=k

E[ξ1]2

= (N2
t −Nt)E[ξ1]2.

Hence we obtain

E

 Nt∑
k=1

Nt∑
l=1,l 6=k

ξkξl

 = E[N2
t −Nt]

(∫
R
xF (dx)

)2

= λ2t2
(∫

R
xF (dx)

)2

.

Plugging this in (6.2.5) gives that,

E[M2
t ] = E

[
Nt∑
i=1

ξ2i

]
= λt

∫
R
x2F (dx).

For the next theorem let us define {N (n)
t }∞n=1 to be mutually independent Poisson processes

with rate λn.7 For n ∈ N let {ξ(n)
i }∞i=1 be i.i.d. random variables with common distribution Fn

which does not assign a mass to the origin. Suppose further that,∫
R
x2Fn(dx) <∞ n ∈ N.

7If λn = 0 then we take N = 0.
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Let M (n) be constructed as in the previous Lemma with the pair (N (n), Fn), then we may obtain
a common filtration by

Ft = σ

⋃
n>1

F
(n)
t


where F

(n)
t is the natural filtration generated by M (n).

Theorem 18. If
∞∑
n=1

λn

∫
R
x2Fn(dx) <∞ (6.2.6)

then there exists a Lévy Process L = {Lt : t > 0} that is a square integrable martingale on the
same probability space as {M (n) : n > 1} which has a characteristic exponent of the form

Ψ(θ) =
∫

R
(eiθx − 1− iθx)

∞∑
n=1

λnFn(dx). (6.2.7)

Moreover for each θ ∈ R such that for each fixed T > 0 we have,

lim
k↑∞

E

sup
t6T

(
Lt −

k∑
n=1

M
(n)
t

)2
 = 0. (6.2.8)

Proof. Notice that by the linearity of the expectation (more precisely the conditional expecta-
tion), we have that any sum of the form

∑
nM

(n) is also a martingale. Moreover by independence
and the martingale property E[M (i)

t M
(j)
t ] = E[M (i)

t ]E[M (j)
t ] = 0 for i 6= j. Thus we have that

E

( k∑
n=1

M
(n)
t

)2
 =

k∑
n=1

E[(M(n)
t )2] = t

k∑
n=1

λn

∫
R
x2Fn(dx) <∞. (6.2.9)

We have now that for each k ∈ N,
k∑

n=1

M
(n)
t ∈ M2

T for a fixed T > 0. We wish to prove now that

the sequence {L(k)}∞k=1 defined by,

L(k) =
k∑

n=1

M
(n)
t

is a Cauchy sequence in M2
T , where we will assume that T > 0 is fixed. Now we have that for

m > n,

||L(m) − L(n)|| = E

( m∑
k=1

M
(k)
t −

n∑
k=1

M
(k)
t

)2
 =

m∑
k=n

E[(M (k)
t )2] =

m∑
k=n

λn

∫
R
x2Fn(dx)

using (6.2.9). Now as
∑∞
n=1 λn

∫
R x

2Fn(dx) < ∞, we see that {L(k)}∞k=1 is a Cauchy sequence
in M2

T and by Theorem 17 converges to some L ∈ M2
T . We can now apply Doob’s Maximal

Inequality to obtain,

lim
n↑∞

E
[

sup
06t6T

(L(n)
t − Lt)2

]
= 0.

Now we can use the Lévy Continuity Theorem to get that

E[eiθ(Lt−Ls)] = lim
n↑∞

E[eiθ(L
(n)
t −L(n)

s )] = lim
n↑∞

E[eiθL
(n)
t−s ] = E[eiθLt−s ]
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which shows the independent stationary increments. Using the fact that the M (n)s are indepen-
dent we obtain that,

E[eiθL
(k)
t ] =

k∏
n=1

E[eiθM
(n)
t ]

=
n∏
n=1

E[e
PNt

j=1 ξj−iθλnt
R

R xFn(dx)]

=
n∏
n=1

E[e−λnt
R

R(1−eiθx)Fn(dx)−iθλnt
R

R xFn(dx)]

=
n∏
n=1

E[e−λnt
R

R(1−eiθx+iθx)Fn(dx)]

= E[et
R

R(eiθx−1−iθx)
Pk

n=1 λnFn(dx)].

We can use the Lévy Continuity Theorem and (6.2.6) we can see that,

E[eiθLt ] = e
R

R(eiθx−1−iθx)
P∞

n=1 λnFn(dx).

All that is left to prove L is a Lévy process is that L has càdlàg paths.
Consider the space of functions f : [0, T ] → R under the supremum metric d(f, g) =

supt∈[0,T ] |f(t) − g(t)|. Take a sequence fn of càdlàg functions that converge to f pointwise.
Fix ε > 0, then by convergence we can pick N ∈ N s.t. d(fn(x) − f(x)) 6 ε/2 for n > N , and
for each n ∈ N d(fn(x+ ε)− f(x)) → 0 as, hence

d(f(x+ ε)− f(x)) 6 d(f(x+ ε)− fN+1(x+ ε)) + d(fN+1(x+ ε)− fN+1(x)) + d(f(x)− fN+1(x))
6 ε+ d(fN+1(x+ ε)− fN+1(x)).

Taking the limit as ε→ 0 gives the result that f is right continuous. Similarly

d(f(x− ε)− f(x)) 6 d(f(x− ε)− fN+1(x− ε)) + d(fN+1(x− ε)− fN+1(x)) + d(f(x)− fN+1(x))
6 ε+ d(fN+1(x− ε)− fN+1(x))

and again by letting ε → 0 we have that f has left limits (as fN+1 have left limits). Hence the
space of càdlàg functions is closed.

As L is the limit of càdlàg functions, this shows that L is càdlàg almost surely. So L must
be a Lévy process.

We have one outstanding issue, that is the process L depends on T . This may be problematic
if the limit changed when we changed T . For the proof to work we need the processes to agree
on the same time horizons. We will now confirm this fact.

Suppose that we have two time horizons T1 > T2 and label LT as the process L with the
time horizon T . Using the triangle inequality of the supremum and Minkovski’s inequality8 we
obtain

E
[
sup
t∈T1

(LT1
t − LT2

t )2
] 1

2

6 E
[
sup
t∈T1

(LT1
t − L

(n)
t )2

] 1
2

+ E
[
sup
t∈T1

(L(n)
t − LT2

t )2
] 1

2

.

Letting n→∞ and using (6.2.8) that we proved earlier the expectation tends to zero, hence we
see that the two processes agree almost surely on the time horizon T1. Thus the limit does not
depend on T .

8The triangle inequality on Lp spaces
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Lévy-Itô decomposition
We are now in a position to prove the main result that we seek.

Theorem 19 (Lévy-Itô decomposition). Let (a, σ2,Π) be a Lévy triplet, then there exists a
probability space (Ω,F ,P) on which three processes L(1), L(2) and L(3) exist, where L(1) is a
Brownian motion with drift, L(2) is a compound Poisson process and L(3) is a square integrable
pure jump martingale that almost surely has a countable number of jumps on each finite interval.

L defined by L = L(1) + L(2) + L(3) is a Lévy process.

Proof. Decompose the Lévy process L as given; by Lévy-Khintchine we have that the character-
istic exponent Ψ of L is given by,

Ψ = Ψ1 + Ψ2 + Ψ3

where Ψ1 is the characteristic exponent of a Brownian motion with drift, Ψ2 is the characteristic
exponent of a compound Poisson process on R\(1,−1) and

Ψ3(θ) =
∫

(−1,1)\{0}
(eiθx − 1− iθx)Π(dx).

The existence of L(1) and L(2) have been shown in previous chapters. We wish to show the
existence of L(3). Take

λn = Π({x|2−(n+1) 6 |x| < 2−n})
and

Fn(dx) = λ−1
n Π(dx)|{x|2−(n+1)6|x|<2−n}.

We verify that the assumptions of Theorem 18 hold as
∞∑
n=1

λn

∫
x2Fn(dx) =

∫
(−1,1)\{0}

x2Π(dx) <∞.

So we may conclude that a Lévy process L(3) exists and has characteristic exponent given by Ψ3.
We can take a common probability space (e.g. the product space) where each of these processes
exist on and hence conclude that L exists.

6.3 Strong Markov Property

In this section we will assume to be working on a filtered probability space (Ω,F , {Ft : t > 0},P),
where we will assume that the filtration {Ft : t > 0} is right continuous and complete.

Markov property is one of the most famous properties of stochastic processes. It was formu-
lated by Andrey Markov. Recall that we say a stochastic process X = {Xt : t > 0} possesses
the Markov property if for any B ∈ B(R) and 0 6 s < t we have that

P(Xt ∈ B|Fs) = P(Xt ∈ B|σ(Xs)).

In a way, this formula tells us that the stochastic process is memoryless up to some extent. If
we know where we are, the probability of where we are going does not change if we know where
we came from.

It is simple to check that any Lévy process satisfies the Markov property. We see that they
posses the property that increments are independent. This is a much stronger statement than
the Markov property. The aim of this section is to establish this.

First we need some basic definitions of stopping times.

Definition 6.3.1. A non-negative random variable τ is called a stopping time if

{τ < t} ∈ Ft.
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Mostly we will be working with first hitting times τx := inf{t > 0 : Xt > x}. These, as the
name suggest, give the first time that a process attains a value greater than x.

Now we need a notion of a random filtration. Take the natural filtration on a process X, it
is natural to define a random filtration by Fτ = {B ∈ Ft : B ∩ {τ < t} ∈ Ft}. We are in a
position now to define the strong Markov property.

Definition 6.3.2. We say that a stochastic process X satisfies the strong Markov property if

P(Xt ∈ B|Fτ ) = P(Xt ∈ B|σ(Xτ ))

for any stopping time τ <∞ a.s.
Equivalently (Xτ+t −Xτ ) conditioned on {τ < ∞}, where P(τ < ∞) > 0 is independent of

Fτ and has law P.

Now we can state the main result of this section.

Theorem 20. A Lévy process L satisfies the strong Markov property.

Proof. If the stopping time is deterministic then the result follows from the Markov property so
let τ be a non-deterministic stopping time with τ <∞ a.s. We prove this for two cases, first we
consider τ taking values in a discrete set, then we have

τ =
∞∑
n=1

tn1τ=tn

for some 0 < t1 < t2 < .... Thus we have for any B ⊂ B(R),

P(Lτ+t − Lτ ∈ B|Fτ ) =
∑

k=
P
tn

P(Ltn+t − Ltn ∈ B|Fk)P(τ = k|Fτ )

= P(Lt ∈ B)
∑

k=
P
tn

P(τ = k) = P(Lt ∈ B).

Now suppose τ is not discrete, then we construct τn = 2−nb2nτ + 1c where bxc is x rounded
down to the closest integer. Now it is obvious that τn ↓ τ and so by right continuity we have
Lτn → Lτ and hence the result follows from the first part.

6.4 Points of Increase

Denote by I, the set of all t such that,

Xs 6 Xt s ∈ [t− δ1, t] Xs > Xt s ∈ [t, t+ δ2] (6.4.1)

for some δ1, δ2 > 0, where X is a stochastic process (not necessarily a Lévy process). We call
the set I points of increase because they describe the points in which a stochastic process is
lower than, in some interval below, and higher than in some other interval above. The question
is, what are the conditions under which I 6= ∅? By Kolmogorov’s 0-1 Law we can deduce that
P(I 6= ∅) = 0 or 1. In the case that we almost surely have I 6= ∅ we say that X has points of
increase.

Burdzy (1990) proved in the case of Brownian motion we do not have any points of increase.
This is intuitively clear as the Brownian motion is nowhere differentiable. It is also clear to see
that a Poisson process (or indeed a compound Poisson process) has points of increase. We will
give sufficient and necessary conditions of a Lévy processes having points of increase. We will
be describing the steps in the paper by Doney (1996), and expanding out the paper by explicitly
proving the claimed obvious statements.
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Let L = {Lt : t > 0} be a Lévy process and eq be an exponential random variable with
parameter q > 0 that is independent of L. Define L and L as

Lt = sup
06s6t

Ls Lt = inf
06s6t

Ls

and suppose that Leq , Leq
have distribution functions F and F respectively. Define the first

passage times
τx = inf{t : Lt > x} τx = inf{t : Lt < −x}

for x > 0 and define

Rε =
{
Lτε

− Lτε
if τ ε 6 eq

∞ if τ ε > eq
.

We will require some more terminology before we can state the main theorem. We say x ∈ R
is regular for a closed or open subset B ⊂ R,

P(τB = 0|L0 = x) = 1

where τB = inf{t > 0 : Lt ∈ B}. Informally, the process hits B straight after starting at x.
Now we can prepare some preliminary results. These can be found in Rogers (1984). First of
these is the so called duality lemma. We will not be utilising the full potential of this result here,
however an important result that follows is the Wiener-Hopf factorizations. Interested reader is
referred to chapter 6 of Kyprianou (2006).

Lemma 6.4.1 (Duality Lemma). Suppose that L is a Lévy process and fix T > 0, then the
following have the same laws;

{Lt : 0 6 t 6 T} {LT− − L(T−t)− : 0 6 t 6 T}.

Proof. First let L∗t = LT− − L(T−t)−, now it is clear that both Lt and L∗t start at 0 and are
càdlàg. Now we will prove that the characteristic functions of L∗ and L coincide and that L∗

has independent increments, which will complete the proof.
Take tn ↑ T and sn ↑ T − t, now for each n ∈ N Ltn − Lsn has the same distribution as

Ltn−sn as it is a Lévy process. For the same reason, the characteristic function is given by the
Lévy-Khintchine formula and is of the form

E[eiθLtn−sn ] = e(tn−sn)Ψ(θ)

where Ψ is the characteristic exponent of L. Now by using the continuity of the exponential we
can rid of left limits and as n→∞ we have

e(tn−sn)Ψ(θ) → e(T−(T+t))Ψ(θ) = etΨ(θ).

As etΨ(θ) is a characteristic function, namely of Lt, we can use the Lévy Continuity Theorem to
conclude that Ltn − Lsn converges in distribution to L∗t and thus,

E[eiθL
∗
t ] = etΨ(θ) = E[eiθLt ].

Characteristic functions are unique up to distribution, so we can conclude that L∗t has the
same law as Lt.

To show stationary independent increments, take t, s > 0 and let kn ↑ T−s and pn ↑ T−t−s.
Now we have that L∗t+s−L∗s = L(T−s)−−L(T−t−s)−. Using the same argument as above we see
that the characteristic function of L∗t+s − L∗s is

lim
n→∞

e(kn−pn)Ψ(θ) = etΨ(θ).
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Now we prove a simple corollary of this lemma which we need.

Corollary 6.4.2. Suppose 0 is regular for (−∞, 0) then

(i) P({∃t : Lt > Lt− = Lt−}) = 0

(ii) P({∃t : Lt < Lt− = Lt−}) = 0.

Proof. We will be proving the two statements in one go. Fix T > 0, ε > 0 and consider

{∃0 6 t 6 T : |Lt − Lt−| > ε,Lt− = Lt−}. (6.4.2)

We wish to show this event has probability zero, and we will be done. By the Lemma we have
just proved, this event has the same law as

{∃0 6 t 6 T : |L∗t − L∗t−| > ε,L∗t 6 L∗u ∀u > t} (6.4.3)

where L∗t = LT− − L(T−t)−.
Now notice that for each bounded stopping time τi, L∗τi

− L∗τi−t has the same distribution
as L∗t by the strong Markov property. As 0 is regular for (−∞, 0) we have that L∗τi+u < L∗τi

for
some u > 0 so (6.4.3), and consequently (6.4.2), are null sets.

We will now require the next lemma in order to prove the theorem by Doney.

Lemma 6.4.3. Let Ĩ be the set of points t of the form

Ls 6 Lt s ∈ [0, t] Ls > Lt s ∈ [t, eq]

called the global increase points. Then P(I 6= ∅) = 1 if and only if P(Ĩ 6= ∅) > 0.

Before we begin the proof, let us try to see why this should be true. If we have a point of
increase, then there is a positive probability of the exponential eq taking the value t + δ2. We
could just re-shift the axis to (t− δ1, Lt−δ1) and then the points of increase would be at 0. This
is the intuition behind the lemma.

Proof. Suppose I 6= ∅ almost surely, then we pick t ∈ I. Notice that Ls − Lt−δ1 has the same
distribution as Ls−t+δ1 , hence by subtracting Ls−δ1 off both sides we obtain Ls−t+δ1 6 Lδ1 and
as s− t+ δ1 > 0, after relabeling u = s− t+ δ1 we obtain

Lu 6 Lδ1 u ∈ [0, δ1].

Taking away Ls−δ1 and using the same substitution from the second part we obtain

Lu > Lδ1 u ∈ [δ1, δ1 + δ2].

Hence by picking eq such that eq 6 δ1 +δ2 with strictly positive probability we obtain the result.
Now suppose that Ĩ 6= ∅ with strictly positive probability. It suffices to show that I 6= ∅ with

strictly positive probability (as we may apply the Kolmogorov 0-1 Law, as we did above). The
case when q = 0, i.e. eq = ∞, the result follows immediately. If q > 0, then we pick a T such
that T 6 eq with positive probability. This gives us the result that T ∈ I with strictly positive
probability and hence the result follows.

In what follows we will be ignoring the case when L (or −L) is a subordinator,9 when L is
a compound Poisson process and when 0 is irregular for (−∞, 0). It is obvious in each of these
cases that the process will have increasing paths.

The theorem by Doney can then be stated as follows.
9Almost surely non-decreasing paths.
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Theorem 21. Let L be a Lévy process such that 0 is regular for (−∞, 0), then L has points of
increase if and only if

lim
ε↓0

F (ε) +
∫∞
ε

P(y < Rε <∞)dF (y)
F (ε)

<∞. (6.4.4)

Proof. Let us first define L̂ by killing L after time eq. That is we add an other state, say ∆,
such that L̂t = Lt for t 6 eq and L̂t = ∆ for t > eq. We also define τ̂ and τ̂ for L̂ as we did
above for L.

Now fix ε > 0. We define two sequence of random variables {Wn : n ∈ Z+} and {Zn : n ∈ N}
by setting W0 = 0 and Z1 = τ̂ ε,

W1 =
{

inf{t > Z1 : L̂t > LZ1} if Z1 <∞
∞ otherwise.

For n > 1 define inductively,

Wn+1 =
{
Wn + LWn+W1 − LWn if Wn <∞
∞ otherwise

and

Zn+1 =
{
Wn + LWn+Z1 − LWn

if Wn <∞
∞ otherwise.

Define
A(ε)
n = {Wn−1 <∞, Zn = ∞}

and let A(ε) = ∪n∈NA
(ε)
n .

Let us now stand back and try to see what A(ε) is telling us. If Z1 <∞ then we have a time
t such that t 6 eq and Lt > −ε. What this is trying to tell us is that we have Leq

> Leq−t − ε.
The event W1 is trying to squeeze a point s1 between eq − t and eq such that Leq > Ls.

All this time we have to check if the exponential clock has run out. If it hasn’t by the
memoryless property, we have an exponential time left. So given that the exponential clock has
not run out, move our axis to (Wn, LWn) and repeat the process of squeezing in points. Now it
is clear that

A(ε) = {∃t : 0 6 t 6 eq, Ls 6 Lt s ∈ [0, t] Ls > Lt − ε s ∈ [t, eq]}.

So the the set that is the limit of A(ε) as ε ↓ 0 is the set of global increase points. The proof
will be complete once we derive a condition that gives this set a strictly possitive probability.

Note that from Corollary 6.4.2 we have that L does not jump up at any time t with Lt = Lt,
Leq

6= 0 and by time reversal Leq
6= Leq

. If we label A as the limit of A(ε) as ε ↓ 0, then we see
that P(A) = P(Ĩ 6= ∅). For each n ∈ N we have that

P(A(ε)
n ) = P(Wn−1 <∞)P(Z1 = ∞) = P(W1 <∞)n−1P(Z1 = ∞)

using the strong Markov property and the memoryless property of the exponential distribution.
Hence

P(A(ε)) = P(Z1 = ∞)
∞∑
n=1

P(W1 <∞)n =
P(Z1 = ∞)

1− P(W1 <∞)
=

P(Z1 = ∞)
P(W1 = ∞)

.
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We know that P(Z1 = ∞) = P(τ̂ ε = ∞) = P(−Leq
6 ε) = F (ε), so we only need to evaluate

the event {W1 = ∞}. The strong Markov property on Z1 gives,

P(W1 = ∞) = P(Z1 = ∞) + P(L̂t 6 LZ1 for t > Z1, Z1 <∞)

= F (ε) + P

(
Z1 6 eq, sup

06s6eq−Z1

{LZ1+s − LZ1} 6 Rε

)
= F (ε) + E[F (Rε)1Rε<∞]

= F (ε) + F (ε)(1− F (ε)) +
∫ ∞

ε

P(y < Rε <∞)dF (y).

Hence

P(A) = lim
ε↓0

F (ε)
F (ε) + F (ε)(1− F (ε)) +

∫∞
ε

P(y < Rε <∞)dF (y)

and so P(A) > 0 if and only if

lim
ε↓0

F (ε) + F (ε)(1− F (ε)) +
∫∞
ε

P(y < Rε <∞)dF (y)
F (ε)

= 1 + lim
ε↓0

F (ε) +
∫∞
ε

P(y < Rε <∞)dF (y)
F (ε)

− F (ε) <∞

and the result follows.
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R. Doney. Increase of Lévy processes. Annals of Probability, 24(2):961–970, 1996.

B. Fristedt and L. Gray. A Modern Approach to Probability Theory. Birkhauser Boston, 1997.
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A. E. Kyprianou. Lecture notes on Lévy processes from Sonderborg. Website, 2007. http:
//www.maths.bath.ac.uk/~ak257/Levy-sonderborg.pdf.
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K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, 1999.

D. W. Strook and S. R. S. Varadhan. Multidimensional Diffusion Processes. Springer-Varlag,
1979.


