Causal impact and Bayesian structural time series
Causal impact is a tool for estimating the impact of a one time action. As an example (which we will actually look at the data) consider the BP oil spill in 2010. Let’s say you want to evaluate the impact that this had on BP stocks. Typically with questions like this, we would like to be able to collect multiple samples from a control group and a test group. As this is not possible we would have to try something else.
[Read More]